Метка «получения водорода»

29 августа

Водород как топливо для автомобилей

В настоящее время многие технические вопросы по внедрению водородной энергетики решены. Все ведущие автомобильные компании имеют концептуальные модели машин, работающих на водороде. Существуют станции заправки этих автомобилей. Однако стоимость водорода пока намного выше, чем бензина или природного газа. Чтобы новая отрасль стала коммерчески оправданной, необходимо выйти на новый уровень получения водорода и снизить цену на него.

Получение водорода

Сейчас известно около десятка методов получения водорода из разных исходных материалов. Самый известный — гидролиз воды, ее разложение при пропускании электрического тока, но он требует больших затрат энергии. Главным направлением снижения энергозатрат при электролизе воды является поиск новых материалов для электродов и электролитов.

Разрабатываются методы получения водорода из воды с использованием неорганических восстановителей — электроотрицательных металлов и их сплавов с добавкой металлов-активаторов. Такие сплавы названы энергоаккумулирующими веществами (ЭАВ). Они позволяют получать из воды любое количество водорода. Еще одним способом выделения водорода из воды может стать ее фотоэлектрохимическое разложение под действием солнечного света.

К распространенным методам относятся парофазная переработка метана (природного газа) и термический метод разложения угля и другого биоматериала. Перспективны термохимические циклы производства водорода, парофазные методы конверсии его из каменного и бурого угля и торфа, а также метод подземной газификации угля с получением водорода.

Отдельная тема — разработка катализаторов для получения водорода из органического сырья — продукта переработки биомассы. Но при этом наряду с водородом образуются значительные количества окиси углерода (СО), который необходимо утилизировать.

Еще один перспективный метод — процесс каталитической паровой переработки этанола. Можно также получить водород из угля (как каменного, так и бурого) и даже из торфа. Также все большее внимание привлекает сероводород. Это обусловлено низкими затратами энергии на электролитическое выделение водорода из сероводорода и большими запасами этого соединения в природе — в воде морей и океанов, в природном газе. Сероводород также получается в качестве побочного продукта нефтеперерабатывающей, химической, металлургической промышленности.

Водород можно получать с использованием плазменных технологий. С их помощью можно газифицировать даже самое низкокачественное углеродное сырье, например твердые бытовые отходы. В качестве источника термической плазмы используются плазмотроны — устройства, генерирующие плазменную струю.

Хранение водорода

Для хранения водорода непосредственно в автомобиле существуют следующие способы: газобаллонный, криогенный, металлогидридный.

В первом случае водород хранится в сжатом виде при давлении около 700 атм. При этом масса водорода составляет всего около 3% от массы баллона и для хранения сколько-нибудь заметного количества газа нужны весьма тяжёлые и объёмные баллоны. Это не говоря уже о том, что изготовление, зарядка и эксплуатация таких баллонов требуют особых мер предосторожности из-за опасности взрыва.

Криогенный способ подразумевает сжижение водорода и хранение его в теплоизолированных сосудах при температуре -235 градусов. Это достаточно энергозатратный процесс – сжижение обходится в 30-40% той энергии, которая получится при использовании полученного водорода. Но, как-бы ни была совершенна теплоизоляция, водород в баке нагревается, давление увеличивается и газ стравливается в атмосферу через предохранительный клапан. Всего несколько дней – и баки пусты!

Самыми перспективными являются твердые накопители, так называемые металлогидриды. Эти соединения умеют вбирать в себя, как губка, водород при одних условиях и отдавать при других, например при нагревании. Чтобы это было экономически выгодно, такой металлогидрид должен «впитывать» не менее 6% водорода. Весь мир сейчас ищет подобные материалы. Как только материал будет найден — его подхватят технологи, и процесс «водородизации» пойдет.

14 июля

Автомобили на водороде: «двойка» за… экологию

Разве может такое быть у «зеленой» технологии? Оказывается, может. Будущее водородных автомобилей, в отличие от других «зеленых» разработок, в настоящее время выглядит весьма печально. Хотя еще совсем недавно это направление казалось самым перспективным и многообещающим. Еще бы — заправляем машину водородом, а из выхлопной трубы идет только водяной пар! Нулевой выброс, предел мечтаний! Автомобиль Honda FCX, использующий в качестве топлива водород, в 2009 году даже завоевал звание World Green Car of the Year («Зеленый автомобиль года»).

Варианты конструкций автомобилей на водороде

Но не будем пока о грустном, а рассмотрим варианты технического исполнения водородомобилей. Их существует ровно два: в первом случае водород заправляется в автомобиль с обычным ДВС, который может работать и на бензине, и на водороде. Во втором случае на электромобиль в качестве источника питания устанавливаются топливные элементы, в которых при соединении водорода и кислорода вырабатывается электричество (именно так устроен упоминавшийся выше Honda FCX).

Обычный бензиновый двигатель после небольших переделок можно приспособить для работы на воздушно-водородной смеси. Дизель для этого не годится, так как смесь не воспламеняется от сжатия. Теоретически при сжигании смеси должна выделяться только вода, однако на практике это не так. Вода выделяется если с водородом смешивать чистый кислород. Если же с водородом смешивать воздух, который в основном состоит из азота, то, соответственно, в выхлопе будут присутствовать его оксиды. Для борьбы с этим явлением смесь приходится обеднять, но при этом мощность двигателя падает почти вдвое! В общем 100 % экологической чистоты достичь не удается.

Второй способ применения водорода гораздо чище. Топливные элементы выделяют только тепло и воду, вырабатывая при этом электричество. То есть их можно сравнить с батарейкой, которая работает с подпиткой на водороде. Напряжение одного элемента невелико, поэтому приходится их компоновать в батарею. Но ее вес, габариты, а, самое главное, стоимость получаются весьма внушительными. Именно цена и препятствует широкому распространению топливных элементов.

Проблемы эксплуатации

Общая проблема обеих типов — хранение водорода в автомобиле. Смесь водорода с воздухом взрывоопасна. Что произойдет с водородомобилем в случае ДТП? Чтобы обеспечить приемлемый запас хода водород необходимо держать в сжиженном состоянии. Бак для сжиженного газа — это дорогостоящее и имеющее большой вес устройство. В случае широкого распространения водородомобилей потребуется сеть заправочных станций, а для этого потребуются время и деньги.

Проблемы получения водорода

Однако все перечисленные проблемы ничто по сравнению с главной проблемой: откуда взять столько водорода? На данном этапе развития существует два основных способа его получения: из метана и из воды.

Но получение из метана и выглядит, мягко говоря, нелогично, да и в экологическом плане не безупречно. Судите сами: берем один вид топлива и перерабатываем его в другой, затрачивая при этом энергию. В ходе получения водорода из метана выделяется углекислый газ, от которого мы как раз хотели избавиться, создавая водородомобиль. Ну, и природный газ — это невозобновляемый ресурс, который рано или поздно закончится.

Более привлекательной выглядит идея получения водорода из воды. Воды на планете хватает, но чтобы добыть из нее водород, необходимо огромное количество энергии. В итоге получается, что затраты энергии на добычу водорода превышают то ее количество, которое он может отдать при использовании в автомобиле.