Метка «солнце»

4 декабря

Вдогонку за солнцем

Идея передвижения на транспортных средствах, использующих солнечную энергию, очень заманчива. Ведь такой электромобиль имеет только солнечные батареи, электромотор и аккумулятор для сохранения выработанной электроэнергии. Ломаться практически нечему! Главное препятствие на пути их широкого распространения – отсутствие эффективных солнечных элементов. И хотя в лабораторных условиях удается достичь КПД в 40%, эффективность лучших коммерчески выпускаемых элементов не превышает 22 %. Кроме того, около 90% всех солнечных модулей изготавливаются из кремния, а его производство экологически небезопасно.

Практические конструкции "солнцемобилей"

Внешне все электромобили, питающиеся от солнечных элементов, похожи. Большинство из них выполнены по одной схеме: напоминающий крыло плоский корпус, практически весь покрытый солнечными панелями, каплевидная обтекаемая кабина, три колеса, закрытые обтекателями. Заднее колесо — ведущее, со встроенным в ступицу электромотором. Такая концепция позволяет улучшить аэродинамику и уменьшить вес.

Победитель гонок 2011 года World Solar Challenge японский солнцемобиль Tokai Challenger 2 полностью соответствует этой концепции. Он представляет цельную трёхколёсную конструкцию с небольшой кабиной в задней части и плоским кузовом, покрытым фотоэлектрическими панелями. Общая площадь солнечных батарей составляет 6 кв.м. КПД батареи 22%, выходная мощность 1,32 кВт. Излишки энергии запасаются в литий-ионном аккумуляторе мощностью 5 кВт*ч и весом 21 кг. Максимальная скорость солнцемобиля — 160 км/ч, а среднее значение 90 км/ч. При габаритах 4,9*1,59*0,88 масса электромобиля составляет всего 140 кг.

Солнцемобиль Nuna7, созданный голландской командой Nuon Solar Team, также относится к лучшим достижениям в своем классе. Но он, в отличие от предшественника Nuna 6, имеет четыре колеса, а не три (из-за изменений в правилах проведения соревнований). В гонках World Solar Challenge 2013 Nuna7 стал победителем, показав среднюю скорость 90,71 км/ч. Габаритные размеры: длина 4,5 метра, ширина 1,8 метра, высота 1,12 метра при весе 150 кг. Доводка формы кузова производилась в аэродинамической трубе, в ходе которой удалось снизить сопротивление воздушному потоку на 10 %. Общая площадь солнечных элементов составляет 6 кв.метров. Источником питания служит литий-ионная батарея емкостью 5,3 Квт*ч весом 21 кг.

Несколько отличается от общей концепции солнцемобиль SolarTaxi. Он также представляет собой трицикл, собранный на трубчатой раме, обклеенной кузовными панелями. Но, в отличие, от собратьев, он двухместный. Рулевое колесо и педали сделаны передвижными, так что машина может быстро превращаться из лево- в праворульную. А самое главное отличие – в размещении батарей. Так как габариты машинки малы, что не позволяло разместить достаточное количество солнечных элементов, было принято решение разместить солнечную батарею на прицепе. Таким образом, площадь батареи довели до 6 кв. метров, значительно увеличив дальность хода. Вместе с прицепом SolarTaxi весит 750 кг. Солнечные батареи питают 20-сильный электромотор, который способен разогнать машину до 90 км/ч. Полученная энергия запасается в натрий-никель-хлоридных аккумуляторах. Такие батареи могут заряжаться от бытовой электросети за 30 минут до половины емкости, а на полную зарядку необходимо от 6 до 8 часов. Кроме того, они намного дешевле литий-ионных и легко утилизируются. При скорости 50 км/ч энергии солнечных и аккумуляторных батарей хватит на 350 км пробега. Без прицепа и с одной полностью заряженной АКБ солнцемобиль может проехать до 200 км. Минимальный же пробег на солнечных батареях при езде в солнечную погоду составляет 100 км. Швейцарский энтузиаст солнцемобилей Луи Палмер совершил в 2007 году кругосветное путешествие на SolarTaxi протяженностью 57000 км. За все время пути с автомобилем случились только две поломки.

14 ноября

Солнце, вперед!

Использование дармовой солнечной энергии давно привлекает ученых и изобретателей. Поэтому солнечные элементы все шире проникают и в быт, и в промышленность. Ведущие страны мира возлагают на солнечную энергетику большие надежды. И хотя в настоящее время ее доля в общемировом объеме произведенной электроэнергии составляет менее 1%, к 2025 году предполагается поднять ее до 20-25%.

Принцип действия фотоэлементов

Основой солнечных батарей являются фотоэлементы. Когда на него падает солнечный свет, представляющий из себя поток фотонов, материал фотоэлемента поглощает его. Каждый фотон обладает малым количеством энергии. Благодаря свойствам материала, из которых изготовлен фотоэлемент, при поглощении фотонов происходит процесс освобождения электронов в фотоэлементе. Свободные электроны, в свою очередь, создают электрический ток. Таким образом, фотоэлемент генерирует электричество, которое может быть сразу использовано или запасено в аккумуляторной батарее. Пока фотоэлемент освещается, процесс образования свободных электронов и генерирования электрического тока непрерывно продолжается.

Один фотоэлемент выдает напряжение около 0,4-0,5 В при токе 25-30 мА. Поэтому для практического использования их соединяют в модули. Длительность эксплуатации солнечных модулей находится в пределах 20 и более лет. Их износ и старение происходит, главным образом, от воздействия окружающей среды.

Материалы и технологии изготовления фотоэлементов

По типу используемых материалов фотоэлементы делятся на неорганические и органические. Подавляющая часть (около 90%) из выпускаемых в настоящее время для практического применения солнечных модулей изготавливается из кремния. Кремниевые фотоэлементы бывают следующих типов: монокристаллические, поликристаллические и аморфные (тонкопленочные). Различие между ними состоит в том, как организованы атомы кремния в кристалле. От этого зависит их КПД: монокристаллические обеспечивают от 15 до 22 %, поликристаллические – от 12 до 17 %, аморфные – от 6 до 10 %. В последние годы идет разработка новых типов не кремниевых неорганических тонкопленочных фотоэлементов. В них чаще всего используются медь-индий-дисиленид и теллурид кадмия. Такие элементы более дешевы, но их КПД ниже – от 8 до 12%. Доля в серийном производстве таких фотоэлементов составляет 7-8 %.

Неорганические фотоэлементы имеют высокую себестоимость, а процесс производства кремния экологически небезопасен. Органические фотоэлементы существенно дешевле, однако их КПД значительно ниже.

Перспективы использования фотоэлементов в электромобилях

Заманчиво иметь автомобиль, который кроме электромотора и солнечных фотоэлементов никаких других агрегатов не имеет. Однако из вышесказанного ясно, что современные солнечные батареи не могут дать столько энергии, сколько требуется машине с нормальными габаритами для езды с полезной нагрузкой в виде пассажиров или грузов.

Чтобы обеспечить электромобиль достаточной мощностью от солнечного света, необходим фотоэлектрический модуль довольно большой площади. Поэтому все существующие конструкции «солнцемобилей», как правило, представляют собой плоские одноместные аппараты на велосипедных колесах с блестящими от солнечных пластин поверхностями и внушительной стоимостью. Такой транспорт вряд ли пригоден для повседневного использования.

Но если ездить на фотоэлементах пока что невыгодно, то почему бы не приспособить их для подзарядки электромобилей? Ведь в этом случае размеры солнечных модулей не имеют большого значения. Уже имеются экспериментальные зарядные станции, которые получают энергию только от солнца, не загрязняя окружающую среду.