Tag Archives: топливо

Природный газ – топливо ближайшего будущего

Эксперты говорят, что количество автомобилей, использующих в качестве топлива природный газ, к 2020 году достигнет 34,9 миллиона. Этот рост будет обусловлен низкой стоимостью природного газа на фоне постоянного роста цен на бензин и дизтопливо.

Стоимость природного газа составляет в среднем 41% от стоимости бензина. Однако газобаллонное оборудование для сжатого природного газа (СПГ) добавляет от 10 до 40% к стоимости автомобиля. Оборудование же для сжиженного природного газа добавляет от 60 до 80% к цене из-за более дорогих баллонов для хранения газа. Поэтому окупаемость ГБО составляет в настоящее время от 2,5 до 6 лет (в зависимости от автомобиля).

Другими факторами в пользу использования природного газа являются: тенденция к снижению стоимости автомобилей; уменьшение запасов нефти; ужесточение норм вредных выбросов; стремление развитых стран уменьшить зависимость от поставок нефти. Почти 95% легких коммерческих автомобилей сегодня работают на СПГ. Увеличивается количество грузовиков и автобусов, использующих этот вид топлива. Ожидается, что к 2020 году 9% парка будет работать на газе.

Азиатско-Тихоокеанский регион лидирует по продажам автомобилей на СПГ (1,2 миллионов экземпляров, как ожидается, будет продано в 2013 году). Среди стран лидируют Китай и Пакистан, их быстро догоняют Таиланд и Индия. Основными причинами являются доступность таких автомобилей и государственная поддержка.

Североамериканский рынок – самый быстрорастущий (17% за год). Продажи легковых автомобилей растут несколько медленнее (14%) из-за недостаточного предложения и не развитости заправочной инфраструктуры. Количество же грузовиков (22%) и автобусов (19%) на СПГ растет гораздо быстрее.

В Европе самыми крупными рынками являются Италия и Украина, однако темпы их роста самые низкие (3% и 4% соответственно) из-за насыщенности. Самым динамично развивающимся является рынок Германии (30% в год) и эксперты предсказывают увеличение продаж автомобилей на СПГ с 7331 штук в 2013 году до 46275 в 2020, во многом благодаря развитию заправочной инфраструктуры (ожидается свыше 1000 АГНКС к 2018 году).

Что касается развития рынка грузовиков, работающих на сжиженном природном газе (LNG), самым крупным является, опять же, Азиатско-Тихоокеанский регион. По прогнозам, ежегодный рост составит 25%, достигнув 11245 экземпляров. На втором месте – США, где, как ожидается, к 2020 году число грузовиков на LNG достигнет 4128 штук.

В январе 2013 года Европейская комиссия представила план развития альтернативных видов топлива с целью уменьшения зависимости от поставок нефти и снижения вредных выбросов. В нем утверждается, что ведущим альтернативным топливом в Европе в ближайшие годы будет природный газ. В настоящее время около одного миллиона автомобилей на континенте использует этот вид топливо, что составляет около 0,5% парка. План предусматривает увеличение этого количества в десять раз к 2020 году. В настоящее время развитие рынка транспортных средств, использующих природный газ, сдерживается их сравнительно высокой стоимостью, низким спросом и отсутствием заправочных станций. Получается порочный круг. Сеть АГНКС не создается из-за малого количества автомобилей. Транспортные средства не продаются по конкурентоспособным ценам, потому что нет достаточного спроса. Потребители не покупают автомобили, потому что они дороги и нет достаточного количества заправок. Поэтому комиссия предлагает пакет обязательств индивидуально для каждой страны, входящей в Евросоюз по развитию заправочной инфраструктуры для экологически чистых видов топлива. Так, согласно этому плану, к 2020 году в Европе должна быть, как минимум, одна заправка для сжатого природного газа на каждые 150 километров.

Видимо, совсем не случайно титул "Зеленый двигатель года" в 2013 году был присужден двухцилиндровому мотору Fiat TwinAir Turbo, который в качестве топлива использует метан. Моторчик объемом всего лишь 0,9 литра развивает 80 л.с. и 140 Нм крутящего момента, расходуя 3,1 кг метана на 100 км и выбрасывая при этом 86 грамм СО2 на каждый километр.

Евросоюз запускает стратегию чистого топлива

В январе 2013 года Европейская комиссия объявила амбициозный пакет мер, направленных на создание сети заправочных станций для всех видов альтернативного топлива в странах Евросоюза с общими стандартами по их разработке и использованию.

Альтернативные виды топлива

В качестве альтернативных видов топлива рассматриваются: сжиженный нефтяной газ (liquefied petroleum gas — LPG), природный газ и биометан (в виде CNG, LNG и GTL), электричество, биотопливо и водород.

LPG (сжиженный нефтяной газ — пропан), используемый как автомобильное топливо, в основном состоит из пропана и бутана, получаемых при добыче природного газа и нефти, а также на различных стадиях ее переработки на заводах. Возможно, что в будущем его будут получать и из биомассы. В настоящее время пропан является самым распространенным из альтернативных топлив. В Евросоюзе примерно 9 миллионов автомобилей используют пропан. Инфраструктура насчитывает около 28000 заправок.

Природный газ (метан) и биометан получают путем добычи ископаемого газа, а также из биомассы и отходов. Технологии использования сжатого природного газа (compressed natural gas — CNG) в двигателях внутреннего сгорания хорошо отработаны. Препятствием для их распространения является недостаточно развитая сеть заправок в большинстве стран Европы.

Сжиженный природный газ (liquefied natural gas — LNG) является привлекательным вариантом топлива для грузового транспорта благодаря его высокой энергетической плотности и низкому уровню выбросов загрязняющих веществ. Технологии использования в ДВС отработаны. Более широкому использованию мешает отсутствие инфраструктуры.

Технология GTL (Gas-to-Liquid – газ в жидкость) – химическое преобразование природного газа в моторное топливо. Процесс происходит в три этапа: получение из метана синтез-газа; преобразование синтез-газа в синтетическую нефть; получение из нефти высококачественного прямогонного бензина и дизтоплива. Дополнительной инфраструктуры не требуется, получаемые продукты полностью совместимы с существующими ДВС.

Электричество, как источник энергии для автомобилей, позволяет радикально изменить систему питания транспорта от единственного энергоресурса, такого как нефть, к универсальному энергоносителю, который может быть получен из множества первичных энергоресурсов. При этом вредные выбросы от транспортных средств полностью отсутствуют. Поэтому электромобили идеально подходят для городских условий. Замена ДВС на электродвигатели позволит снизить выбросы углекислого газа на 30%.

Автомобили на водородных топливных элементах обеспечивают большую дальность пробега по сравнению с батарейными электромобилями. Время для их заправки значительно меньше и сравнимо со временем заправки обычных автомобилей. Основными препятствиями для распространения водородомобилей являются их высокая цена (из-за дороговизны топливных элементов) и полное отсутствие заправочной инфраструктуры. Уровень выбросов парниковых газов при производстве водорода зависит от источника энергии. Сами водородомобили обладают нулевым выбросом углерода.

Биотопливо в техническом отношении может заменить нефть на всех видах транспорта с использованием существующих производственных мощностей и заправочной инфраструктуры. Однако его производство ограничено наличием плодородных земель и недостаточной стабильностью. Основными преимуществами жидких биотоплив являются их высокая энергетическая плотность и совместимость (в допустимых концентрациях) с существующими транспортными средствами.

Предложения Еврокомиссии

Всем членам Евросоюза предписано иметь на своей территории обязательный минимум заправочных/зарядных станций для природного газа, водорода и электромобилей с оборудованием, созданным по единым стандартам.

 

 

Электрические зарядные станции. Ситуация сильно различается в разных странах Евросоюза. Лидирующие позиции занимают Германия, Франция, Нидерланды, Испания и Великобритания. В предложениях Еврокомиссии для каждой страны индивидуально устанавливается обязательное минимальное число точек подзарядки с едиными зарядными разъемами. Целью является создание такого количества станций, которое бы позволило производителям наладить массовое производство электромобилей по разумным ценам. Для устранения неопределенности со стандартами электрический разъем Type 2 устанавливается как единый стандарт для всей Европы.

Водород. Германия, Италия и Дания уже имеют значительное количество водородных заправочных станций, хотя некоторые из них не являются общественными. Определенные компоненты, например, заправочные шланги, все еще требуют разработки и внедрения единых стандартов. Еврокомиссия предлагает соединить все существующие водородные заправки в единую сеть. Предложения относятся к 14 государствам, которые уже имеют такие заправки.

Биотоплива уже охватили около 5% рынка. В качестве топливных смесей с бензином и дизелем они не требуют отдельной инфраструктуры. Основная задача заключается в повышении их устойчивости.

Сжиженный природный газ используется как топливо для грузовиков, однако только 38 заправочных станций существует в Евросоюзе. Еврокомиссия предлагает, чтобы к 2020 году на каждые 400 километров Трансевропейской сети автодорог приходилась одна заправочная станция.

Сжатый природный газ в настоящее время используют 1 миллион автомобилей, что составляет 0,5% от их общего количества. К 2020 году их число должно возрасти в 10 раз. Еврокомиссия предлагает, чтобы по всей Европе к 2020 году одна общественная заправочная станция с едиными стандартами приходилась не менее чем на каждые 150 километров.

Для сжиженного нефтяного газа никаких дополнительных мер не предусматривается, так как инфраструктура в настоящее время достаточно развита.

Водород как топливо для автомобилей

В настоящее время многие технические вопросы по внедрению водородной энергетики решены. Все ведущие автомобильные компании имеют концептуальные модели машин, работающих на водороде. Существуют станции заправки этих автомобилей. Однако стоимость водорода пока намного выше, чем бензина или природного газа. Чтобы новая отрасль стала коммерчески оправданной, необходимо выйти на новый уровень получения водорода и снизить цену на него.

Получение водорода

Сейчас известно около десятка методов получения водорода из разных исходных материалов. Самый известный — гидролиз воды, ее разложение при пропускании электрического тока, но он требует больших затрат энергии. Главным направлением снижения энергозатрат при электролизе воды является поиск новых материалов для электродов и электролитов.

Разрабатываются методы получения водорода из воды с использованием неорганических восстановителей — электроотрицательных металлов и их сплавов с добавкой металлов-активаторов. Такие сплавы названы энергоаккумулирующими веществами (ЭАВ). Они позволяют получать из воды любое количество водорода. Еще одним способом выделения водорода из воды может стать ее фотоэлектрохимическое разложение под действием солнечного света.

К распространенным методам относятся парофазная переработка метана (природного газа) и термический метод разложения угля и другого биоматериала. Перспективны термохимические циклы производства водорода, парофазные методы конверсии его из каменного и бурого угля и торфа, а также метод подземной газификации угля с получением водорода.

Отдельная тема — разработка катализаторов для получения водорода из органического сырья — продукта переработки биомассы. Но при этом наряду с водородом образуются значительные количества окиси углерода (СО), который необходимо утилизировать.

Еще один перспективный метод — процесс каталитической паровой переработки этанола. Можно также получить водород из угля (как каменного, так и бурого) и даже из торфа. Также все большее внимание привлекает сероводород. Это обусловлено низкими затратами энергии на электролитическое выделение водорода из сероводорода и большими запасами этого соединения в природе — в воде морей и океанов, в природном газе. Сероводород также получается в качестве побочного продукта нефтеперерабатывающей, химической, металлургической промышленности.

Водород можно получать с использованием плазменных технологий. С их помощью можно газифицировать даже самое низкокачественное углеродное сырье, например твердые бытовые отходы. В качестве источника термической плазмы используются плазмотроны — устройства, генерирующие плазменную струю.

Хранение водорода

Для хранения водорода непосредственно в автомобиле существуют следующие способы: газобаллонный, криогенный, металлогидридный.

В первом случае водород хранится в сжатом виде при давлении около 700 атм. При этом масса водорода составляет всего около 3% от массы баллона и для хранения сколько-нибудь заметного количества газа нужны весьма тяжёлые и объёмные баллоны. Это не говоря уже о том, что изготовление, зарядка и эксплуатация таких баллонов требуют особых мер предосторожности из-за опасности взрыва.

Криогенный способ подразумевает сжижение водорода и хранение его в теплоизолированных сосудах при температуре -235 градусов. Это достаточно энергозатратный процесс – сжижение обходится в 30-40% той энергии, которая получится при использовании полученного водорода. Но, как-бы ни была совершенна теплоизоляция, водород в баке нагревается, давление увеличивается и газ стравливается в атмосферу через предохранительный клапан. Всего несколько дней – и баки пусты!

Самыми перспективными являются твердые накопители, так называемые металлогидриды. Эти соединения умеют вбирать в себя, как губка, водород при одних условиях и отдавать при других, например при нагревании. Чтобы это было экономически выгодно, такой металлогидрид должен «впитывать» не менее 6% водорода. Весь мир сейчас ищет подобные материалы. Как только материал будет найден — его подхватят технологи, и процесс «водородизации» пойдет.

Топливо с полей

Биотопливо – один из видов альтернативного топлива, производимый из сырья растительного или животного происхождения. Самыми распространенными в настоящее время являются биоэтанол, биодизель и, в меньшей степени, биогаз.

Биоэтанол

Биоэтанол, который по-нашему мы называем спиртом, производится в основном из кукурузы или сахарного тростника. Наиболее распространен в Бразилии, США, Швеции. Применяется не в чистом виде, а в смеси с бензином в разных пропорциях. Смесь Е-10 содержит 10% биоэтанола, Е-85, соответственно, 85%. Десятипроцентным топливом без переделок можно заправлять любой современный автомобиль, применение 85- процентного требует переделки двигателя и системы питания. Существуют и так называемые Flex-Fuel (FFV) автомобили, которые могут работать и на бензине, и на его смеси с этанолом в любом соотношении.

Биодизель

Биодизель является продуктом переработки растительного масла, сырьем для которого чаще всего служат рапс, соя или подсолнечник. Так же, как и биоэтанол, биодизель применяется в автомобилях не в чистом виде, а в смеси с дизтопливом. Например: В-20 – 20% биодизеля, 80% обычного дизтоплива. В отличие от биоэтанола применение биодизеля не требует доработки двигателя и топливной системы.

И биоэтанол, и биодизель обеспечивают выхлоп, позволяющий с запасом укладываться в экологические нормы. Но так как их энергетическая эффективность ниже, чем у чистого бензина или солярки, то мощность двигателя снижается, а расход топлива возрастает. А самое главное, что широкое использование этих видов биотоплива создает продовольственные проблемы, так как пищевые сельскохозяйственные культуры используются не по прямому назначению, а для производства топлива для автомобилей.

Битоплива второго поколения

Решить эту проблему призваны биотоплива второго поколения. Главное их отличие в том, что сырьемдля их производства служит биомасса, то есть разного рода отходы: остаточные непищевые части растений (стебли, листья, шелуха), древесная стружка, солома, кожура и мякоть от прессовки фруктов, навоз и т.п. Одним из представителей биотоплива второго поколения является биогаз, который еще называют «канализационный» газ. Состоит биогаз из метана и углекислого газа. Для применения в автомобилях его предварительно очищают от углекислого газа и получают биометан. По своим свойствам это аналог природного метана, разница лишь в происхождении. Также из биомассы можно получать и этанол, и дизель.

Биотопливо третьего поколения

Биотопливо третьего поколения вырабатывается из водорослей, но до его практического применения пока еще далеко. В отличие от сырья для первого и второго поколений, водоросли можно выращивать на землях и в водоемах, непригодных для сельского хозяйства или. Также для их выращивания могут использоваться и закрытые фитобиореакторы. По мере роста водоросли накапливают жиры и биомасла, имеющие молекулярную структуру, аналогичную традиционной нефти. Причем рост происходит посредством естественного фотосинтеза, для которого требуется солнечный свет, вода и углекислый газ, а также питательные вещества. Растущие водоросли потребляют углекислый газ, обеспечивая снижение объемов парниковых газов в атмосфере. Водоросли вырабатывают больший объем биотоплива с одного акра (0,4 га) занимаемых площадей, чем источники биотоплива на базе сельскохозяйственных культур. Водоросли могут вырабатывать более 2000 галлонов топлива с акра занимаемых площадей в год. Примерный выход топлива, получаемого из других источников, намного ниже: пальма – 650 галлонов, сахарный тростник – 450 галлонов, кукуруза – 250 галлонов, соя – 50 галлонов.