Tag Archives: всемирный

Требования Всемирной топливной хартии к дизельному топливу

Цетановое число – это характеристика компрессионного воспламенения топлива. Увеличение цетанового числа уменьшает время проворачивания коленчатого вала двигателя до пуска, а также заметно снижает выбросы вредных веществ, расход топлива и шумность работы.

Цетановый индекс – это цетановое число топлива, которое вычисляется на основе измерения свойств топлива. Цетановое число определяется на испытательном двигателе и отражает влияние топливных присадок, улучшающих цетановое число топлива.

Цетановый индекс и цетановое число по-разному влияют на эксплуатационные характеристики автомобиля. Следовательно, чтобы избежать передозировки топливных присадок, необходимо сохранять минимальную разницу между цетановым индексом и цетановым числом.

Плотность и кинематическая вязкость. Изменения плотности (и кинематической вязкости) топлива приводят к изменению мощности двигателя и, следовательно, к изменению выбросов из двигателя и расхода горючего. Чтобы сделать работу двигателя и выбросы выхлопных газов оптимальными, и минимальное, и максимальное предельные значения для плотности должны быть определены в достаточно узком диапазоне.

Пониженная плотность будет уменьшать выбросы твердых частиц из всех дизельных автомобилей и выбросы NOx из тяжелонагруженных автомобилей. Однако пониженная плотность также будет увеличивать расход топлива и снижать мощность, снимаемую с двигателя. Изменения кинематической вязкости топлива (понижение плотности обычно приводит к снижению вязкости) могут усилить влияние плотности на мощность (но необязательно на расход горючего), особенно в сочетании с топливными насосами распределительного типа.

Серийные дизельные двигатели настраиваются на некоторую стандартную плотность, которая определяет количество впрыскиваемого горючего. Объемное количество впрыска горючего – это параметр управления для систем очистки отработавших газов, таких как система рециркуляции выхлопных газов (РВГ). Следовательно, изменения плотности топлива приводят к неоптимальным уровням РВГ для данной нагрузки и данной скорости в сравнении с заложенными в программу автомобиля и, как следствие, влияют на характеристики выхлопных газов.

Подача горючего и регулировка впрыска также зависят от вязкости топлива. Высокая вязкость может снизить скорость расхода горючего, приводя к недостаточной подаче топлива. Очень высокая вязкость горючего может привести к деформации насоса. Низкая вязкость, с другой стороны, будет увеличивать протечки из насосных элементов и в худшем случае (низкая вязкость плюс высокая температура) может привести к полной потере топлива в результате утечки. Так как на вязкость влияет температура окружающей среды, важно сделать минимальным диапазон между минимальным и максимальным предельным значением вязкости, чтобы сделать работу двигателя оптимальной.

Сера является природным компонентом сырой нефти. Если серу не удалить во время процесса переработки нефти, она будет загрязнять автомобильное топливо. Сера дизельного топлива определяет количество выбросов мелких твердых частиц (ТЧ) в отработавших газах из-за образования сульфатов, как в двигателе, так и позже в атмосфере. Сера может привести к коррозии и износу систем двигателя. Более того, эффективность некоторых систем очистки отработавших газов снижается при увеличении концентрации серы в топливе, в то время как другие системы полностью выходят из строя из-за отравления серой. Влияние серы на выбросы твердых частиц общепризнано и считается существенным.

Фильтры твердых частиц. Дизельные фильтры твердых частиц с непрерывной регенерацией (ДФТЧНР) и каталитические дизельные фильтры твердых частиц (КДФТЧ) представляют собой два подхода к регенерации дизельных фильтров твердых частиц (ДФТЧ). ДФТЧНР осуществляет регенерацию фильтра, непрерывно генерируя NO2 из NO, выброшенного из двигателя, на дизельном окислительном катализаторе, помещенном перед ДФТЧНР. КДФТЧ осуществляет регенерацию ДФТЧ, используя каталитическое покрытие на элементе ДФТЧ, чтобы способствовать окислению собранных ТЧ, используя кислород, имеющийся в дизельном выхлопе.

Ароматические углеводороды – это те молекулы топлива, которые содержат, по крайней мере, одно бензольное кольцо. Содержание ароматических углеводородов в дизельном топливе влияет на температуру сгорания и, следовательно, на выбросы NOx во время сгорания. Полиароматические углеводороды в топливе влияют на образование твердых частиц и выбросы полиароматических углеводородов (ПАУВ) из дизельного двигателя.

Фракционный состав. Кривая фракционного состава дизельного топлива показывает количество топлива, которое выкипит при данной температуре. Содержащиеся в топливе легкие фракции влияют на легкость запуска. Слишком большая доля тяжелых фракций приводит к закоксовыванию и повышенным выбросам сажи, дыма и твердых частиц.

Текучесть при низких температурах. Дизельное топливо может иметь высокое содержание (до 20%) парафинов, которые обладают ограниченной растворимостью в топливе и при достаточном охлаждении выделятся из раствора в виде твердого парафина. Следовательно, достаточная текучесть при низких температурах – это одна из основных характеристик дизельного топлива.  Текучесть при низких температурах обычно определяется фракционным составом горючего, углеводородным составом (содержание парафинов, нафтенов, ароматических углеводородов) и использованием топливных присадок.

 Технические требования к текучести дизельного топлива при низких температурах должны устанавливаться в соответствии с сезонными и климатическими потребностями региона, в котором используется это топливо. Парафин в автомобильных топливных системах – это потенциальный источник проблем с эксплуатацией. Следовательно, низкотемпературные свойства дизельных топлив определяются испытаниями, связанными с образованием парафина:

  • температура помутнения — температура, при которой самые тяжелые парафины начинают выпадать в осадок и образовывать кристаллы воска: топливо становится «мутным»;
  • предельная температура фильтруемости — наименьшая температура, при которой топливо может проходить через фильтр во время стандартизованного испытания на фильтрацию;
  • температура потери текучести – этот показатель используется на рынках США и Канады.

 

Вспенивание. Дизельное топливо имеет склонность к пенообразованию во время заправки топливного бака, что замедляет этот процесс и вызывает риск перелива. Антипенные присадки иногда добавляются в дизельное топливо, причем часто как компонент многофункционального пакета присадок, чтобы ускорить и обеспечить более полное наполнение баков автомобиля. Их использование также снижает вероятность пролива топлива на землю. Кремнийорганические поверхностно-активные присадки эффективны при подавлении склонности к пенообразованию дизельных топлив. Важно, чтобы выбранная антипенная присадка не создавала каких-либо проблем для долгосрочной надежности систем очистки отработавших газов.

Эфиры растительных масел (ЭРМ) все в большей степени используются как дополнительный ресурс дизельного топлива или заменитель дизельного топлива. Это обусловлено усилиями некоторых стран использовать продукцию сельского хозяйства или снизить зависимость от импорта нефтепродуктов. Существуют данные, свидетельствующие о положительном влиянии этих продуктов на экологических показатели. Однако существуют и сомнения по вопросу использования этих эфиров в дизельных топливах высокого качества.

Технические преимущества метилового эфира в основном заключаются в том, что они обеспечивают смазку топливной аппаратуры, которая ухудшается при удалении из дизельного топлива серы, и уменьшают выбросы твердых частиц с отработавшими газами. Недостатки метиловых эфиров следующие:

  • они требуют особых мер предосторожности при низких температурах во избежание избыточного роста вязкости и потери текучести. Могут потребоваться топливные присадки для устранения этих проблем;
  • так как эти эфиры гигроскопичны, особые меры предосторожности требуются для предотвращения повышенного содержания воды и последующего риска коррозии;
  • возрастает склонность к образованию отложений, поэтому настоятельно рекомендуется обработка дизельного топлива моющими присадками;
  • прокладки и композитные материалы в топливной системе подвергаются воздействию метиловых эфиров, если они не подобраны для этого топлива.

 

Учитывая технический эффект эфиров, их содержание ограничивается 5%. Применение эфиров в более высоких концентрациях требует адаптации двигателей к этому виду топлива.

Чистота топливной форсунки. Устойчивая работа двигателя зависит от качества работы топливной форсунки. В случае ее загрязнения будут иметь место повышенные шум, дым и выбросы.

Кончик топливной форсунки подвергается очень жестким воздействиям, так как он находится непосредственно в зоне сгорания, как в форкамерных двигателях, так и в двигателях прямого впрыска. Твердые продукты горения образуют отложения на кончике топливной форсунки, что значительно влияет на работу форсунки. В форкамерных двигателях продукты отложения частично блокируют бесперебойную подачу топлива при частичной нагрузке, и горение может стать более неустойчивым. Аналогично, в двигателях прямого впрыска частичная или полная закупорка одного из тонких распылительных отверстий нарушит распыление топливной струи и работу двигателя.

В случае форкамерных двигателей, закоксовывание неизбежно из-за типа используемой топливной форсунки, и при выборе форсунки необходимо учитывать это. Однако уровень закоксовывания зависит и от качества топлива. Топливные форсунки двигателей прямого впрыска изначально более устойчивы к закоксовыванию, но низкое качество топлива может, в конце концов, привести к закупорке распылительного отверстия.

Решение этой проблемы необходимо искать в использовании моющих присадок в топливе. Большие дозы этих присадок могут частично отмыть уже сильно закоксованную топливную форсунку, а меньшие дозы могут поддерживать приемлемый уровень чистоты форсунки. Многие дистрибьюторы горючего включают такие топливные присадки в товарное дизельное топливо. Чистота топливных форсунок станет еще более важной в недалеком будущем, так как системы впрыска высокого давления все в большей степени используются как в тяжелонагруженных, так и в слабонагруженных двигателях прямого впрыска. 

Смазывающая способность. Насосы дизельного топлива, не имеющие внешних систем смазки, рассчитаны на смазывающие свойства самого дизельного топлива. Процессы очистки, проводимые для удаления серы из дизельного топлива, одновременно уменьшают количество компонентов топлива, которые обеспечивают естественную смазку. Недостаточная смазывающая способность может привести к повышенным выбросам с выхлопными газами, повышенному износу топливного насоса и, в некоторых случаях, аварийным поломкам.

Требования Всемирной топливной хартии к автомобильным бензинам

Октановое число – это мера способности бензина сопротивляться самовоспламенению; самовоспламенение может вызвать детонацию в двигателе. Имеется два метода лабораторных испытаний для измерения октановых чисел: один из них определяет октановое число по исследовательскому методу (ОЧИ), а другой определяет октановое число по моторному методу (ОЧМ). ОЧИ наилучшим образом коррелирует с условиями низкой скорости и средней детонации, а ОЧМ коррелирует с условиями высокотемпературной детонации и частичной работы дросселя. Значения ОЧИ обычно больше, чем значения ОЧМ.

Автомобили проектируются и настраиваются на определенное октановое число. Когда потребитель использует бензин с октановым числом меньшим, чем требуемое октановое число, возникает детонация, которая может привести к серьезному повреждению двигателя. Двигатели, снабженные датчиками детонации, могут работать при более низких октановых числах, уменьшая угол опережения зажигания; однако, увеличится расход горючего и снизится мощность, а при очень низких октановых числах детонация не исчезнет. Использование бензина с октановым числом большим, чем требуется, не улучшит качество работы автомобиля. Топливная хартия устанавливает три сорта бензина по октановому числу в каждой категории (91, 95 и 98 по ОЧИ).

Сера является природным компонентом сырой нефти. Если серу не удалить во время процесса переработки нефти, она будет загрязнять автомобильное топливо. Сера оказывает существенное влияние на автомобильные выбросы, снижая производительность катализатора и негативно влияя на датчики кислорода. Уменьшение концентрации серы приводит к уменьшению выбросов из всех автомобилей, оборудованных катализаторами.

Производители усиленно работают над снижением расхода топлива при сниженных выбросах углекислого газа. Работа на обедненной топливно-воздушной смеси – это наиболее перспективный способ достичь этого снижения в автомобилях, работающих на бензине. Однако возникает новая проблема, связанная с качеством очистки отработавших газов. В то время как несгоревшие углеводороды и СО эффективно удаляются с помощью существующих катализаторов во время работы на обедненной смеси, NOx удаляются только во время работы на стехиометрической или богатой смеси.

Катализаторы “Lean NOx absorber” работают, химически улавливая NOx во время работы на обедненной смеси. Затем NOx выделяются и разлагаются катализатором за несколько секунд работы на богатой смеси. Однако оксиды серы адсорбируются сильней и снижают поглотительную способность адсорбента по оксидам азота. Удаление серы требует более длительной работы на богатой смеси, что сводит на нет выгоды топливной экономичности, основанной на сжигании обедненной смеси. Однако, при использовании бензинов, не содержащих серу, будет сохраняться необходимая активность разложения NOx.

Свинец. Алкилсвинцовые топливные присадки ранее использовались как недорогие антидетонаторы для бензина. Однако их вредное влияние на здоровье привело к тому, что на многих рынках перестали использовать этилированный бензин. Следует все-таки обратить внимание на существующий автомобильный парк, так как для более старых автомобилей требуется наличие в топливе свинца (или топливных присадок, замещающих свинец) для защиты двигателя. Бензины с низким содержанием свинца (0.05 г/дм3) продаются на рынках этилированного бензина. Это снижает риск загрязнения и обеспечивает достаточную защиту двигателя. В то время как эффективность автомобильных катализаторов возрастает, стойкость к свинцовому отравлению остается очень низкой, так что даже слабое загрязнение свинцом может привести к разрушению современного катализатора. Следовательно, рынок бензина, не содержащего свинец, очень важен в долгосрочном плане.

Золообразующие топливные присадки могут негативно и необратимо повлиять на работу катализаторов и других компонентов (например, кислородного датчика), что приведет к увеличению выбросов. Таким образом, следует использовать высококачественный бензин, а использования золообразующих топливных присадок необходимо избегать.

МТМ (метилциклопентадиенил трикарбонил марганца) – это соединение на основе марганца, поставляемое как топливная присадка, увеличивающая октановое число, для бензина и топливная присадка, улучшающая сгорание, для дизельного топлива. Продукты горения МТМ образуют отложения на внутренних деталях двигателя, таких как свечи зажигания, приводя к перебоям зажигания, нарушению работы двигателя и повышенным выбросам. В результате растет число нареканий со стороны потребителей и гарантийных расходов производителя.

Продукты горения также накапливаются на катализаторе. Как только катализатор покрывается или забивается ими, время жизни и эффективность его уменьшаются. Продукты горения МТМ накапливаются на поверхности катализатора, но бортовая система диагностики может ошибочно показывать, что катализатор работает нормально. Таким образом, неисправность катализатора не будет замечена и устранена, в то время как автомобиль будет работать с повышенными выбросами загрязняющих веществ в атмосферу.

Ферроцен использовался как замена свинца для увеличения октанового числа для неэтилированных топлив на некоторых рынках. Он содержит железо, которое накапливается на катализаторах и других частях выхлопной системы в виде оксида железа. Оксид железа действует как физический барьер между катализатором/кислородным датчиком и отработавшими газами. В результате система очистки отработавших газов не способна функционировать, как требуется, что приводит к увеличению выбросов. Таким образом, использования ферроцена необходимо избегать в составе неэтилированного бензина.

Кремний не является естественным компонентом бензина. Однако иногда он появляется в товарном бензине при попадании отработанных растворителей, содержащих соединения кремния, используемых на нефтеперерабатывающих заводах. Такое загрязнение оказывает существенное негативное влияние на системы очистки отработавших газов. Кремний, даже в небольших концентрациях, может вызвать сбой работы кислородных датчиков и высокие уровни отложений в двигателе и катализаторах. Это может привести к отказу двигателя при использовании даже менее чем одного бака такого загрязненного горючего. Следовательно, в бензине не должно присутствовать обнаруживаемых концентраций кремния, а также он не должен использоваться как компонент какой-либо топливной присадки для улучшения характеристик бензина и двигателя.

Оксигенаты, такие как МТБЭ и этанол, часто добавляются в бензин для увеличения октанового числа или чтобы вызвать изменение в стехиометрии в сторону обеднения смеси для уменьшения выбросов оксида углерода. Работа на более обедненной смеси снижает выбросы оксида углерода на автомобилях с карбюраторами и топливными системами без электронного управления с обратной связью. Эти выгоды снижения выбросов не реализуются в полной мере в современных автомобилях, использующих электронное управление с обратной связью, потому что эффект обеднения имеет место только во время работы на холодном двигателе или во время быстрого ускорения. Это переобеднение может вызвать рост выбросов. Так как этанол имеет более высокую теплоту парообразования, чем эфиры, снижение ездовых характеристик автомобиля, использующего бензин с этанолом, происходит за счет дополнительной теплоты, необходимой для испарения бензина. Если используются оксигенаты, предпочтительно использовать эфиры. Использование метанола не допускается. Метанол – это агрессивное вещество, которое может вызвать коррозию металлических деталей топливных систем и разрушение полимеров.

Олефиновые углеводороды – это ненасыщенные углеводороды, которые являются высокооктановыми компонентами бензина. Однако они могут привести к образованию отложений и повышенным выбросам химически активных углеводородов, способствующих образованию озона и токсичных соединений. Олефиновые углеводороды термически нестабильны и могут привести к образованию смол и отложений в во впускной системе двигателя.

Ароматические углеводороды – это молекулы топлива, которые содержат, по крайней мере, одно бензольное кольцо. Они являются высокооктановыми и высокоэнергетическими компонентами бензина. Сгорание ароматических углеводородов может привести к увеличению содержания канцерогенного бензола в выхлопных газах и увеличению отложений в камере сгорания. Снижение объемной доли ароматических углеводородов в бензине существенно снижает выбросы токсичного бензола и углекислого газа.

Бензол – это природный компонент сырой нефти, являющийся высокооктановым продуктом каталитического риформинга. Для человека он является сильным канцерогеном. В атмосферу выделяется в результате испарения и с отработавшими газами.

Давление насыщенных паров бензина должно контролироваться по сезонам с учетом различных уровней испаряемости, необходимых при различных температурах. Давление насыщенных паров должно строго контролироваться при высоких температурах, чтобы снизить вероятность проблем, связанных с горячим топливом, таких как паровая пробка или перегрузка угольного фильтра (адсорбера). Контроль над давлением насыщенных паров при высоких температурах также важен для снижения выбросов за счет испарения. При более низких температурах более высокое давление насыщенных паров необходимо, чтобы позволить легкий запуск и прогрев двигателя.

Фракционный состав задается либо как ряд температур «Т» (Т50 – это температура, при которой выкипает 50% бензина), либо как ряд величин «И» (И100 – процент бензина, испарившегося при 100 градусах). Избыточно высокая температура Т50 (или низкий процент И100) может привести к плохому запуску и плохим рабочим характеристикам во время прогрева при умеренных температурах окружающей среды. Контроль над индексом пускового периода (ИПП), рассчитываемым по температурам, при которых выкипает 10%, 50% и 90% бензина, и объемной доле кислорода, может также использоваться как гарантия надежного холодного пуска и прогрева двигателя.

Паровая пробка. Излишне высокая испаряемость бензина может вызвать проблемы при нагревании топлива, такие как образование паровой пробки, перегрузка угольного фильтра и повышенные выбросы. Паровая пробка возникает, когда слишком много пара образуется в топливной системе и снижается подача топлива в двигатель. Это может привести к потере мощности, неустойчивой работе двигателя или к тому, что двигатель заглохнет. Так как давление насыщенных паров и фракционный состав не достаточны для того, чтобы гарантировать устойчивую работу автомобиля, необходимо установить некоторое соотношение паровой и жидкой фаз (показатель паровой пробки).

Топливные присадки для защиты от отложений. Сгорание даже очень качественного бензина может привести к образованию отложений. Такие отложения будут увеличивать выбросы из двигателя и негативно влиять на рабочие характеристики автомобиля. Высококачественное топливо содержит топливные присадки для защиты от отложений на форсунках и клапанах.

Однако моющие присадки обычно увеличивают уровень отложений в камере сгорания (ОКС) по сравнению с базовым горючим. Поэтому необходимо создавать оптимальные топливные присадки для максимального снижения ОКС, что позволит конструкторам двигателей улучшить конструкции камер сгорания для снижения выбросов и расхода горючего. Удаление ОКС может снизить углеводородные выбросы из двигателя на величину до 10%, СО – до 4% и NOx – до 15%.