Category Archives: Водород

Водородные технологии и концепты BMW

Efficient Dynamics – стратегия развития BMW, направленная на снижение расхода топлива и выбросов вредных веществ. Ее ключевые аспекты – достижение наивысшей эффективности двигателей, интеллектуальное управление потоками мощности в автомобиле, снижение аэродинамического сопротивления и облегчение конструкции. В рамках этой стратегии проводятся также исследования и испытания инновационных и альтернативных силовых установок. Спектр исследований включает в себя как классические ДВС, так и гибридные технологии, использование водорода в качестве топлива и полностью электрический привод. К двум последним разработкам относится гибрид на топливных элементах и концепт с водородным реформером. Первый позволяет передвигаться в городской черте практически с нулевыми выбросами; второй же существенно уменьшает выбросы во время прогрева двигателя. Новая гибридная платформа с водородными топливными элементами предназначена для следующего поколения Mini и переднеприводных моделей BMW и планируется к выпуску в 2014 году. В настоящее время производство таких моделей сдерживает отсутствие сети водородных заправок.

Гибрид на топливных элементах с нулевым выбросом в городе.

Изготовленный на базе BMW 1-ой серии, гибрид демонстрирует новый подход к использованию водорода в качестве топлива. Автомобиль оборудован четырехцилиндровым бензиновым ДВС, электродвигателем и вспомогательной силовой установкой (ВСУ) на основе топливных элементов. Сочетание ДВС с топливными ячейками позволяет использовать обе технологии с максимальной эффективностью. Использование водорода обеспечивает необходимую дальность хода и быструю заправку. Размер топливного элемента достаточен для обеспечения движения автомобиля на малых скоростях, в то время как ДВС идеально подходит для дальних высокоскоростных загородных поездок. В условиях городского движения электроэнергия, вырабатываемая ВСУ, запасается в суперконденсаторах. Эта энергия отдается электродвигателю при разгоне и старте со светофора. Во время торможения и движения накатом электромотор работает как генератор, возвращая энергию в суперконденсаторы. Проводимые в настоящее время исследования и испытания имеют целью довести общий пробег гибрида в городском цикле до нескольких сотен километров.

Все компоненты гибрида легко устанавливаются в стандартный трехдверный кузов BMW 1 Series. ВСУ расположена под капотом вместе с ДВС, электродвигатель занимает место заднего редуктора и приводит в движение задние колеса. 82 кВт «электрической» мощности и высокий крутящий момент обеспечивают с самого старта «спортивный дух» BMW. Батарея суперконденсаторов заняла место КПП в центральном туннеле. 120-сильный ДВС крутит передние колеса. Объем бензинового бака уменьшен, что позволяет разместить рядом бак для водорода. Таким образом, внутреннее пространство кузова не уменьшилось, и в нем по-прежнему могут разместиться пять человек. Общий же вес автомобиля вырос незначительно.

Технология низкотемпературных топливных ячеек с полимерной мембраной разрабатывалась BMW с 1997 года. С самого начала исследования были направлены на создание компактной ВСУ с максимально низким весом. Концепт BMW 750hL, представленный в начале 2000-х годов, использовал блок топливных ячеек как источник бортового питания. В настоящее время производится уже четвертое поколение ВСУ. Помимо увеличения срока службы до 5000 часов, эти устройства менее сложны, а, значит, имеют более высокую надежность. Они уверенно работают при атмосферном давлении, а их КПД достигает 58%. ВСУ быстро реагирует на изменение нагрузки. Переход от режима холостого хода до максимальной мощности занимает всего лишь 5 миллисекунд. Полимерные топливные ячейки способны работать при низких температурах. Система приходит в рабочее состояние всего лишь через 30 секунд после «холодного» старта. Исследования показали, что после нескольких сотен «холодных» пусков параметры ВСУ не изменились.

ВСУ нового гибрида обеспечивает электропитанием всех потребителей сети аналогично с концептом BMW 750hL. При этом они не отбирают мощность ДВС. Это позволяет также улучшить и некоторые функции комфорта. Например, кондиционер или медиа-системы могут работать во время стоянки, питаясь от батареи топливных ячеек. ВСУ обеспечивает небольшую мощность на протяжении длительного периода времени; энергия же, запасенная в суперконденсаторах, позволяет развивать высокую мощность в течение короткого временного отрезка. Совместная работа этих устройств позволяет добиться идеального движения в городских условиях.

Реформер : меньше выбросов при холодном пуске.

Концепт с реформером изготовлен на базе пятидверной BMW 1 серии. Известно, что наибольшее количество вредных веществ ДВС производит при холодном пуске и прогреве до тех пор, пока каталитический нейтрализатор не нагреется до рабочей температуры. Разработанный BMW реформер существенно снижает выбросы. Он может работать и с бензиновыми, и с дизельными моторами. Идея заключается в том, что во время запуска и прогрева двигатель питается не обычным топливом, а газом, синтезированным из него в реформере. Конструкция реформера довольно проста. Он состоит из смесительной камеры со свечой и форсункой и катализатора. В катализаторе происходит расщепление углеводородных цепей, в результате чего синтезируется газ. Газ на 21% состоит из водорода и на 24% из окиси углерода. Этот газ подается во впускной коллектор двигателя, полностью заменяя обычное топливо на время пуска и прогрева. Поскольку такая смесь сгорает практически без остатка, вредных выбросов образуется намного меньше. Двигатель может постоянно работать на синтезированном газе, однако в таком случае резко снижается КПД, т.к. в процессе расщепления 15-20% энергии топлива теряется в виде теплоты. Однако это свойство имеет побочный положительный эффект: производимое в ходе реакции тепло быстрее прогревает двигатель до рабочей температуры. Серийному применению конструкции пока препятстсвуют ее сравнительно большие размеры и вес. Разработчики работают над тем, чтобы снизить вес реформера до 1,5 кг против нынешних 5 кг. Если это им удастся, реформер сможет заменить в дизелях дорогостоящие дополнительный нагреватель, сажевый фильтр, NOx катализатор, а в грузовых дизелях – систему SCR.

Водородные технологии и концепты BMW

Efficient Dynamics – стратегия развития BMW, направленная на снижение расхода топлива и выбросов вредных веществ. Ее ключевые аспекты – достижение наивысшей эффективности двигателей, интеллектуальное управление потоками мощности в автомобиле, снижение аэродинамического сопротивления и облегчение конструкции. В рамках этой стратегии проводятся также исследования и испытания инновационных и альтернативных силовых установок. Спектр исследований включает в себя как классические ДВС, так и гибридные технологии, использование водорода в качестве топлива и полностью электрический привод. К двум последним разработкам относится гибрид на топливных элементах и концепт с водородным реформером. Первый позволяет передвигаться в городской черте практически с нулевыми выбросами; второй же существенно уменьшает выбросы во время прогрева двигателя. Новая гибридная платформа с водородными топливными элементами предназначена для следующего поколения Mini и переднеприводных моделей BMW и планируется к выпуску в 2014 году. В настоящее время производство таких моделей сдерживает отсутствие сети водородных заправок.

Гибрид на топливных элементах с нулевым выбросом в городе.

Изготовленный на базе BMW 1-ой серии, гибрид демонстрирует новый подход к использованию водорода в качестве топлива. Автомобиль оборудован четырехцилиндровым бензиновым ДВС, электродвигателем и вспомогательной силовой установкой (ВСУ) на основе топливных элементов. Сочетание ДВС с топливными ячейками позволяет использовать обе технологии с максимальной эффективностью. Использование водорода обеспечивает необходимую дальность хода и быструю заправку. Размер топливного элемента достаточен для обеспечения движения автомобиля на малых скоростях, в то время как ДВС идеально подходит для дальних высокоскоростных загородных поездок. В условиях городского движения электроэнергия, вырабатываемая ВСУ, запасается в суперконденсаторах. Эта энергия отдается электродвигателю при разгоне и старте со светофора. Во время торможения и движения накатом электромотор работает как генератор, возвращая энергию в суперконденсаторы. Проводимые в настоящее время исследования и испытания имеют целью довести общий пробег гибрида в городском цикле до нескольких сотен километров.

Все компоненты гибрида легко устанавливаются в стандартный трехдверный кузов BMW 1 Series. ВСУ расположена под капотом вместе с ДВС, электродвигатель занимает место заднего редуктора и приводит в движение задние колеса. 82 кВт «электрической» мощности и высокий крутящий момент обеспечивают с самого старта «спортивный дух» BMW. Батарея суперконденсаторов заняла место КПП в центральном туннеле. 120-сильный ДВС крутит передние колеса. Объем бензинового бака уменьшен, что позволяет разместить рядом бак для водорода. Таким образом, внутреннее пространство кузова не уменьшилось, и в нем по-прежнему могут разместиться пять человек. Общий же вес автомобиля вырос незначительно.

Технология низкотемпературных топливных ячеек с полимерной мембраной разрабатывалась BMW с 1997 года. С самого начала исследования были направлены на создание компактной ВСУ с максимально низким весом. Концепт BMW 750hL, представленный в начале 2000-х годов, использовал блок топливных ячеек как источник бортового питания. В настоящее время производится уже четвертое поколение ВСУ. Помимо увеличения срока службы до 5000 часов, эти устройства менее сложны, а, значит, имеют более высокую надежность. Они уверенно работают при атмосферном давлении, а их КПД достигает 58%. ВСУ быстро реагирует на изменение нагрузки. Переход от режима холостого хода до максимальной мощности занимает всего лишь 5 миллисекунд. Полимерные топливные ячейки способны работать при низких температурах. Система приходит в рабочее состояние всего лишь через 30 секунд после «холодного» старта. Исследования показали, что после нескольких сотен «холодных» пусков параметры ВСУ не изменились.

ВСУ нового гибрида обеспечивает электропитанием всех потребителей сети аналогично с концептом BMW 750hL. При этом они не отбирают мощность ДВС. Это позволяет также улучшить и некоторые функции комфорта. Например, кондиционер или медиа-системы могут работать во время стоянки, питаясь от батареи топливных ячеек. ВСУ обеспечивает небольшую мощность на протяжении длительного периода времени; энергия же, запасенная в суперконденсаторах, позволяет развивать высокую мощность в течение короткого временного отрезка. Совместная работа этих устройств позволяет добиться идеального движения в городских условиях.

Реформер : меньше выбросов при холодном пуске.

Концепт с реформером изготовлен на базе пятидверной BMW 1 серии. Известно, что наибольшее количество вредных веществ ДВС производит при холодном пуске и прогреве до тех пор, пока каталитический нейтрализатор не нагреется до рабочей температуры. Разработанный BMW реформер существенно снижает выбросы. Он может работать и с бензиновыми, и с дизельными моторами. Идея заключается в том, что во время запуска и прогрева двигатель питается не обычным топливом, а газом, синтезированным из него в реформере. Конструкция реформера довольно проста. Он состоит из смесительной камеры со свечой и форсункой и катализатора. В катализаторе происходит расщепление углеводородных цепей, в результате чего синтезируется газ. Газ на 21% состоит из водорода и на 24% из окиси углерода. Этот газ подается во впускной коллектор двигателя, полностью заменяя обычное топливо на время пуска и прогрева. Поскольку такая смесь сгорает практически без остатка, вредных выбросов образуется намного меньше. Двигатель может постоянно работать на синтезированном газе, однако в таком случае резко снижается КПД, т.к. в процессе расщепления 15-20% энергии топлива теряется в виде теплоты. Однако это свойство имеет побочный положительный эффект: производимое в ходе реакции тепло быстрее прогревает двигатель до рабочей температуры. Серийному применению конструкции пока препятстсвуют ее сравнительно большие размеры и вес. Разработчики работают над тем, чтобы снизить вес реформера до 1,5 кг против нынешних 5 кг. Если это им удастся, реформер сможет заменить в дизелях дорогостоящие дополнительный нагреватель, сажевый фильтр, NOx катализатор, а в грузовых дизелях – систему SCR.

Toyota FCV Mirai

 

Toyota взяла твердый курс на водородные технологии. Глава корпорации Такеши Учиямада (Takeshi Uchiyamada) заявил, что водород и водородные топливные ячейки изменят правила игры в социальном и экономическом плане, а водород станет топливом будущего. Именно поэтому тойотовцы назвали свое творение Mirai, что означает «будущее». В Toyota уверены, что Mirai – это автомобиль, который откроет дверь в будущее для их компании.

Toyota Mirai – четырехдверный среднеразмерный переднеприводной седан на топливных элементах, который может составить полноценную конкуренцию автомобилям с ДВС. На его заправку уходит всего лишь 3-5 минут, а дальность поездки достигает 482 км. Топливные ячейки Mirai могут работать при температуре до 30 градусов мороза. Силовая установка ускоряет Mirai до 100 км/ч за 9 секунд, разгон с 40 до 65 км/ч занимает 3 секунды, а максимальная скорость составляет 178 км/ч.

Основные элементы TFCS

 

В Mirai используется фирменная система Toyota Fuel Cell System (TFCS), использующая технологии топливных ячеек и гибридные технологии. Она включает в себя также собственные разработки Toyota: блок топливных ячеек (FC Stack), повышающий преобразователь (FC boost converter) и водородные баллоны высокого давления. TFCS намного энергоэффективнее ДВС и не выделяет при работе CO2 и канцерогенных веществ.

Toyota FC Stack

 

Максимальная мощность нового блока топливных элементов достигает 114 кВт (153 л.с.). Эффективность генерации электричества повышена за счет использования тончайших 3D каналов. Каналы расположены в тонкой трехмерной решетчатой структуре и повышают дисперсию воздуха (кислорода), что позволяет достичь равномерной выработки электроэнергии на поверхности ячеек. Это, в свою очередь, обеспечивает компактные размеры и высокий уровень производительности – плотность выходной мощности достигает 3,1 кВт/л или 2 кВт/кг. Это один из самых высоких показателей в мире. Каждый блок состоит из 370 ячеек толщиной 1,34 мм и весит 102 грамма. В отличие от предыдущих устройств, разработанных Toyota, новый FC Stack не требует применения увлажнителя. Значительного сокращения стоимости топливных элементов удалось добиться также за счет уменьшения использования драгоценных металлов (количество платины в катализаторе снизилось на две трети, а обработка поверхности золотом была исключена). Батарея топливных элементов располагается под передними сиденьями.

FC Boost Converter

Новый компактный (13-литровый), высокоэффективный преобразователь большой емкости был разработан для повышения энергии, генерируемой батареей топливных ячеек, до 650 В. Увеличение напряжения позволило уменьшить размер электродвигателя и количество блоков топливных элементов, что привело к снижению общей стоимости системы. Преобразователь расположен непосредственно перед батареей топливных элементов.

Водородные баллоны высокого давления

Два баллона, имеющие трехслойную структуру, изготовлены из пластика, армированного углеродным волокном и других материалов. Водород хранится в них под давлением 70 МПа (около 700 бар). Трехслойная структура включает в себя:

  • Внутренний слой: пластиковый вкладыш (предотвращает утечку водорода).
  • Средний слой: пластик, армированный углеродным волокном (структурная основа).
  • Внешний слой: пластик, армированный стекловолокном (защищает внешнюю поверхность от истирания).

 

Передний баллон вмещает 60 литров, задний – 62,4 литра. Общая масса хранимого водорода – около 5 кг. По сравнению с баллонами, которые использовались в Toyota FCHV-adv, объем увеличился почти на 20% при уменьшении веса и размеров. Плотность хранения водорода достигает 5,7% (самый высокий показатель в мире).

Электродвигатель и батарея

Силовая установка включает в себя также электродвигатель, блок управления мощностью и никель-металлгидридную (NiMH) батарею. Электромотор развивает мощность 113 кВт (152 л.с.) и 335 Нм крутящего момента.

Безопасность

Toyota начала разработку топливных ячеек в начале 1990-х и создала ряд «водородных» автомобилей, общий пробег которых составил свыше 1,6 млн. км. Водородные баллоны из углеволокна не раз подвергались испытаниям в краш-тестах. Весь накопленный опыт отражен в безопасности и надежности Mirai. В центре безопасности Toyota автомобиль был подвергнут обширным краш-тестам, включающим фронтальные, боковые и задние удары. Структура кузова спроектирована таким образом, чтобы энергия удара распределялась и поглощалась несколькими его элементами.

Особое внимание было уделено защите водородных баллонов и батареи топливных элементов при деформациях кузова. Баллоны оснащены датчиками водорода, которые подают сигнал тревоги и перекрывают запорные клапаны в случае утечки. Все элементы, содержащие и подающие водород, размещены вне пассажирского салона, что обеспечивает, в случае утечки, его быстрое рассеивание в окружающей среде.

Каркас блока топливных элементов изготовлен из недавно разработанного термопластичного армированного углеродным волокном пластика. Это легкий, прочный и легко внедряемый в массовое производство материал. Он защищает FC Stack, поглощая удары от неровностей дорожного покрытия.

Водородные технологии Toyota

В конце ХХ века многие поверили в то, что в скором времени на смену нефти придут топливные элементы. Не осталась в стороне от всеобщего увлечения водородными технологиями и Toyota. Наряду с гибридом Prius, японцы в том же 1997 году создали и первый прототип своего «водородомобиля» Toyota FCHV-1. Основой для его создания послужила модель Highlander. В течение последующих пяти лет (в 1999 и в 2001 годах) были созданы усовершенствованные варианты FCHV-2 и FCHV-3, пока в 2002 году не появился первый серийный вариант FCHV-4. Однако полномасштабного коммерческого выпуска японцы не планировали. Ограниченная серия из 20 автомобилей была отдана для тестирования в различные университеты, корпорации и правительственные учреждения в США и Японии.Силовая установка Toyota FCHV состояла из блока топливных элементов мощностью 90 кВт, которая питала 90-киловаттный электродвигатель, развивавший 260 Нм крутящего момента. Никель-металлгидридная батарея служила дополнительным источником энергии для подпитки электромотора во время ускорений и для движения на малых скоростях. Ее емкости хватало на 50 километров пробега. Принцип работы силовой установки очень похож на работу гибридной установки Hybrid Synergy Drive (HSD), применяемой на Toyota Prius. Главное отличие состояло в том, что вместо ДВС использовался блок топливных элементов. А вот механизм совместной или раздельной работы батареи и топливных элементов, система рекуперативного торможения остались прежними. Toyota FCHV, имея снаряженную массу почти 1900 кг, разгонялась до 155 км/ч, а запаса водорода хватало на 330 км пробега.В 2008 году появилась новая версия «водородомобиля» под названием Toyota FCHV ADV. Окончание ADV означало «Advanced» — «Улучшенный». В чем же заключались улучшения? Прежде всего, в существенной доработке блока топливных элементов. Изменения, внесенные в его конструкцию, увеличили энергоотдачу на 25% и, что самое главное, позволили FCHV ADV надежно работать при температурах до -30°С. Новые баки позволили хранить водород при давлении, вдвое превышающем прежнее, а, значит, вмещать большее его количество. Кроме того, заметно снижено энергопотребление вспомогательных систем и увеличена эффективность системы рекуперации энергии торможения. В результате всех этих улучшений Toyota FCHV ADV способен преодолеть без дозаправки 800 км! Остальные же «автомобильные» характеристики остались прежними.

В июне 2008 года водородомобиль получил сертификат серийного автомобиля. В январе 2010 года Toyota объявила о начале трехлетних демонстрационных испытаний 100 экземпляров FCHV-ADV на дорогах США. Как и прежде, автомобили будут работать в университетах и госучреждениях, доказывая преимущества этого вида «зеленого» транспорта и стимулируя развитие инфраструктуры для «водородомобилей». А полномасштабное серийное производство японцы обещают начать не ранее 2015 года. А к этому времени, как считают специалисты Toyota, и более точно определится вектор развития «зеленого» транспорта — то ли это будут автомобили на топливных элементах, то ли «чистые» электромобили.

Компания «Авто-Семья» оформляет срочный выкуп автомобиля с выездом. Если вы хотите быстро продать свой автомобиль по справедливой цене, обращайтесь к специалистам компании, воспользуйтесь калькулятором онлайн на сайте компании и узнайте рыночную стоимость своего автомобиля. Услуга доступна круглосуточно.

«Водородная» история Hyundai

26 февраля 2013 года произошло знаменательное событие – с конвейера завода Hyundai в Ульсане сошел первый в мире серийный «водородомобиль» ix35 Fuel Cell. К этому дню корейцы шли целых 13 лет. Еще в 2000 году Hyundai запустил свою программу по созданию электромобиля на топливных элементах. К октябрю этого же года был создан первый прототип такого автомобиля на базе модели Santa Fe. Чтобы снизить общий вес, стальную раму заменили алюминиевой. Однако это не помогло существенно улучшить динамику – максимальная скорость едва превышала 120 км/ч, а разгон до «сотни» занимал целых 18 секунд. Да и дальность хода не впечатляла: на одном баке машина могла проехать лишь 160 км. Но усилия Hyundai по созданию экологичного автомобиля были по достоинству оценены в Калифорнии – лакомом куске для любого автопроизводителя. Участие в экосоревнованиях, организованных Калифорнийским обществом топливных элементов, принесло Santa Fe первые места за нулевые выбросы и низкую шумность и второе место за топливную экономичность.

Вторым этапом программы стало создание в 2005 году Tucson FCEV, который впервые был представлен опять же в США – колыбели автомобильной экологии. Автомобиль заметно превосходил предшественника благодаря использованию топливных элементов второго поколения, новой 152 – вольтовой батареи и 80 – киловаттному электродвигателю. Максимальная скорость составила уже 150 км/ч, а увеличенный вдвое бак позволял проехать без дозаправки целых 300 км. Кроме того, Tucson FCEV, в отличие от предшественника, стал легко переносить отрицательные температуры за бортом. В 2008 году «водородомобиль» успешно преодолел 6900 км пробега Hydrogen Road Tour, в котором приняли участие еще 7 крупнейших автопроизводителей США, Японии и Европы.

В марте 2010 года в корейцы презентовали новую, третью модель своей «воодородной» серии — ix35 (на корейском рынке Tucson) Fuel Cell. 100 – киловаттные топливные элементы вкупе с литий-ионной батарей емкостью 24 кВт*ч обеспечивают запас хода в 650 км. Батарея используется как дополнительный источник энергии при разгоне, а так же для движения при отсутствии водорода в баке. Автомобиль разгоняется до 100 км/ч за 12,5 секунды, а максимальная скорость увеличилась до 160 км/ч. Водород хранится в двух баллонах под давлением в 700 бар. В них помещается 5,6 килограмма водорода, а его потребление составляет 0,95 кг/100 км – на 15% меньше, чем у водородного Tucson предыдущего поколения. В пересчете на бензин это соответствует расходу в 3,2 л/100 км. К вопросу о безопасности. Водородные баллоны, армированные углеводородным волокном, пуленепробиваемые. В ходе одного из тестов специалисты Hyundai оценивали взрывоопасность. Для сравнения взяли обычный бензиновый ix35 и его водородного близнеца. В пепельнице обеих машин оставили горящий окурок. Бак бензиновой машины взорвался через 40 минут, система же безопасности ix35 FCEV заблаговременно стравила водород из баллонов, предотвратив взрыв.

В 2011 году Hyundai ix35 FCEV был выбран в качестве демонстрационной модели для тестирования в реальных условиях эксплуатации с целью продвижения технологии водородных топливных элементов. Автомобили ix35 FCEV предлагались для испытаний членам Европарламента, специальным уполномоченным и другим европейским законодателям. Кроме Hyundai, над водородными технологиями активно работают специалисты Toyota, General Motors и Daimler. Главным преимуществом автомобилей на топливных элементах по сравнению с «обычными» электромобилями на литий-ионных батареях является гораздо больший пробег без дозаправки и существенно меньшее время для заправки водородом по сравнению со временем, необходимым для подзарядки батарей. А больший пробег потребует гораздо меньшую сеть заправочных водородных станций. То есть, по потребительским качествам «водородомобиль» ни в чем не уступает обычному автомобилю, но при этом практически не загрязняет окружающую среду. Но где же взять столько водорода? Специалисты Hyundai подсчитали, что 20% от производимого в Корее водорода хватит для заправки 500 000 автомобилей на топливных элементах в течение года.

Итак, серийный выпуск начат. За два года Hyundai планирует произвести 1000 экземпляров ix35 FCEV, которые разойдутся в основном по государственным структурам в Европе. Цена автомобиля составляет 88550 $ без учета налоговых льгот. В 2015 году планируется начало массового выпуска для всех желающих в объеме 10 тысяч экземпляров в год. Предполагаемая цена – 50 000 $, которая с учетом скидок и льгот для конечного потребителя должна составить 30 000 $. К этому времени, как расчитывают в Hyundai, и автомобиль удастся доработать, и в наиболее развитых странах мира будет создана сеть заправочных станций.

Водородный Mercedes

Судя по всему, Мерседес всерьез взялся за водородные технологии. Для чего же еще был организован 125 -дневный кругосветный пробег трех автомобилей В-класса F-CELL? Внешне экспериментальная машина ничем не отличается от обычной. Основная «начинка» — три углепластиковых бака для водорода и электрохимический генератор расположены под полом. Воздух для работы топливных ячеек подается с помощью компрессора. В багажнике поместили высоковольтную литий-ионную батарею, а под капотом – электродвигатель мощностью 136 л.с. и крутящим моментом 290 Нм. Привод осуществляется на передние колеса через два планетарных ряда и дифференциал, обеспечивающих движение вперед и назад.

Основным источником тока является электрохимический генератор, а батарея используется при холодном старте, пока топливные элементы не вышли на рабочий режим, и для хранения энергии, запасенной при рекуперативном торможении. На одной батарее автомобиль может проехать несколько километров. В таком режиме удобно двигаться в городе, не затрачивая водород и одновременно подзаряжая батарею за счет торможения. Причем тормозной момент мотора настолько велик, что зачастую даже нет необходимости давить на педаль тормоза: достаточно просто отпустить «газ» — и машина тут же замедляется.

Рабочая температура топливных элементов – 80 градусов. На прогрев требуется от 15 минут до часа, в зависимости от температуры наружного воздуха. Но в случае необходимости, например, если разряжен литий-ионный аккумулятор, электрохимический генератор может вступать в работу и через несколько секунд после старта. Но до момента выхода на рабочий режим мощность будет ограничена, а потребление водорода возрастет. Когда ЭХГ прогрет, он, кроме питания электродвигателя, еще и подзаряжает батарею. Кроме того, прогретый генератор сохраняет тепло долгое время, и оно используется для отопления автомобиля. Вода в топливных ячейках благодаря мерседесовским технологиям не замерзает при «забортной» температуре до -25 градусов.

Когда мотору необходимо развить высокую мощность, он может запитываться одновременно и от генератора, и от батареи. Максимальная скорость автомобиля 170 км/ч, а до сотни он разгоняется за 11,4 с. Но на высоких скоростях Mercedes F-CELL не так удобен. Крутящий момент электродвигателя с ростом оборотов снижается, а, значит, ускорение при нажатии на акселератор происходит довольно медленно. Кроме того, существенно возрастает расход водорода. Если при экономной езде расход водорода примерно составляет 1,1 кг на 100 км, то на шоссейных скоростях он возрастает до 1,2 кг. Немного? Но в переводе на привычные для нас литры первая цифра эквивалентна 3,7 л/100 км, а вторая – около 20 л/100 км!

Водородные баки вмещают 3 кг водорода, что обеспечивает запас хода около 400 км. Заправка занимает не более трех минут. При этом согласно требованиям техники безопасности, автомобиль необходимо заземлить.

А насколько эффективен водородный автомобиль? КПД самой силовой установки составляет 90%. Но с учетом существующих технологий получения, транспортировки и хранения водорода, он падает до 22%. КПД же современного дизеля составляет 25%, а лучших образцов гибридов – до 33%. Но, в то же время, эмиссия токсических веществ водородомобиля равна нулю.

Honda FCX Clarity: добраться до серии

Эта модель была удостоена престижного титула World Green Car of the year 2009. Тогда еще перспективы водородной энергетики казались радужными. Но за прошедшее время FCX так и не пошла в серию, хотя производственная линия была построена. Всего изготовлено 220 машин, из которых на 20 провели краш-тесты, чтобы доказать безопасность хранения водорода, а оставшиеся были сданы в аренду на три года в США и Японии. Но с момента создания машины прорыва в получении водорода не произошло, поэтому FCX остается ждать лучших времен. Хотя с технической точки зрения машина совсем не плоха.

Водород, поступающий из бака в батарею топливных элементов, соединяется там с кислородом, получаемым из внешней среды. Энергия реакции преобразуется в электричество, которое питает электромотор. Дополнительная энергия, получаемая при торможении, остается в литиево-ионном аккумулятореРекуперативная тормозная система здесь — почти такая же, как и у обычного гибрида. При этом КПД водородной установки в 3 раза превышает показатель традиционного бензинового двигателя и в 2 раза — гибридной силовой установки.

Основной элемент автомобиля FCX Clarity — водородный электрогенератор V Flow FC мощностью 100 кВт. Он достаточно компактен и весит всего лишь 67 кг. Вырабатываемая им электроэнергия используется для питания ходового электромотора мощностью 136 л.с. и крутящим моментом 256 Нм. Дополнительную энергию электродвигателю при старте и разгоне обеспечивает литий-ионная батарея напряжением 288 В. Поэтому, несмотря на немаленькие габариты (длина 4835 мм, ширина 1845 мм, высота 1470 мм) и снаряженную массу в 1600 кг FCX Clarity ускоряется до 100 км/ч за 10 с. Максимальная скорость 160 км/ч. Привод от электромотора через редуктор осуществляется на передние колеса. 170 литровый бак вмещает в себя 4 килограмма водорода, которого хватает на 470 километров, то есть расход составляет 1кг примерно на 117 км. На заправку уходит 3-4 минуты.

Из электронных систем FCX Clarity оборудована системой ABS с электронным распределением тормозного усилия, системой экстренного торможения, системой стабилизации ESP. Отсутствие выхлопной системы позволило сделать днище кузова абсолютно плоским, что положительно сказывается на аэродинамике автомобиля: воздух плавно обтекает машину. Расположение бака с водородом, литий-ионной батареи и непосредственно самого электрохимического генератора обеспечивает низкий центр тяжести, улучшая управление и устойчивость.

При нынешней удельной емкости литий-ионных батарей чисто электрическая платформа годится для машин классов А+ и В+. Для более крупных машин, каковой и является FCX Clarity, более перспективной представляется технология топливных элементов.

Мифы и правда о топливных элементах (FCEV)

 

Последние годы продемонстрировали быстрый рост рынка топливных элементов в глобальном масштабе, особенно в США, Великобритании, Германии, Франции и Японии. Общественные и частные инвестиции, государственная поддержка развития инфраструктуры и субсидирование потребителей, снижение стоимости производства и, особенно, обещания производителей приступить к выпуску автомобилей на топливных элементах – все это ясно свидетельствует о признании этого вида транспорта. Но, несмотря на очевидный прогресс, остается немало мифов об использовании, энергоэффективности и стоимости топливных элементов. Итак, настало время развенчать ряд устоявшихся заблуждений.

Миф № 1: Водородная энергетика не энергоэффективна

Водород — самый распространенный элемент во Вселенной, но на нашей планете его необходимо извлекать из воды или органических соединений. Этот процесс не имеет больших отличий от производства бензина или дизтоплива, которые получают путем переработки или очистки нефти (причем при этом используется водород). Кроме получения водорода в промышленных масштабах из природного газа, он также производится из возобновляемых источников, таких как солнечная энергия, энергия ветра или биогаз, не требуя при этом использования ископаемого топлива. Возможность производства из возобновляемых источников так называемого «зеленого» водорода очень важна и для разгрузки существующей энергосистемы.

 

Кроме того, автомобили на топливных элементах имеют нулевой выброс CO2 и твердых частиц. Согласно исследованиям, автомобили, в которых в качестве топлива используется водород, полученный из природного газа, выделяют от 55 до 65% меньше углерода по сравнению с бензиновыми ДВС, благодаря более высокой эффективности. Топливные элементы также демонстрируют намного большую эффективность по сравнению с ДВС, работающими на природном газе. Причем, по расчетам по принципу «well-to-wheels» (т.е. на протяжении всего жизненного цикла – от начала производства до эксплуатации), это не зависит от того, получен водород из природного газа или из возобновляемых источников. И при этом FCEV еще и не выбрасывают канцерогены, твердые частицы и вещества, образующие смог, которые оказывают вредное влияние на здоровье населения в крупных городах.

Миф № 2: Водород является опасным при хранении и использовании

Одним из самых частых аргументов, которые приходится слышать при обсуждении использования водорода, — что это горючий газ, который легко воспламеняется. Поэтому его хранение весьма опасно как на заправочных станциях, так и в топливных баках высокого давления. Однако, водород не более и не менее опасен по сравнению с другими горючими топливами, батареями, используемыми в электромобилях и сжатым газом, хранящемся в баллонах. Миллионы километров дорожных испытаний, проведенных в последние годы, существующая на протяжении десятилетий многомиллиардная глобальная индустрия по производству и транспортировке водорода безусловно свидетельствуют о безопасности его хранения. Toyota не так давно получила одобрение от Министерства экономики, торговли и индустрии Японии на производство водородных баков для FCEV. Для демонстрации безопасности баков, изготовленных из углеродного волокна, их обстреливали из огнестрельного оружия. Пули либо отскакивали от бака, либо оставляли небольшие вмятины.

Водород обладает высоким коэффициентом диффузии (в 3,8 раза больше, чем у природного газа). Это означает, что попадая в атмосферу, он почти сразу же растворяется до не воспламеняемых концентраций. По этой причине он даже может считаться более безопасной альтернативой повседневно используемому бензину, который при проливе образует легковоспламеняемые очаги в течение длительного периода. Водород имеет низкий коэффициент излучения — вы можете поднести руку к горящему водородному пламени, не получив ожога. Это означает, что горящий водород не создает опасности возгорания окружающих материалов, тогда как жар, производимый горящим бензином, выше.

Миф № 3: FCEV и соответствующая инфраструктура слишком дороги и поэтому никогда не станут альтернативой на массовом рынке

 

Затраты на производство автомобилей на топливных элементах в последнее время резко снизились. Достижения в технологии изготовления топливных элементов, улучшение характеристик катализаторов привели к значительному уменьшению стоимости. По заявлению представителей Hyundai, расходы сократились на 70% по сравнению с концом 90-х годов, когда компания только начинала работать над топливными элементами. Производители продолжают настойчиво трудиться над снижением стоимости FCEV, ведь для их выхода на массовый рынок не требуется никаких новых изобретений, а всего лишь увеличение объемов производства, инжиниринговое обеспечение и развитие заправочной инфраструктуры.

Миф № 4: Заправка водородом представляет трудности и отнимает много времени

Водители не почувствуют значительных отличий в способе заправки FCEV водородом. Схожий принцип «пистолет в бак» и, в отличие от автомобилей, использующих другие виды альтернативного топлива, стандарты «водородной» заправки уже существуют. Так, модели на топливных элементах, выпускаемые Toyota, Hyundai и Honda, могут заправляться на заправочной колонке. Причем этот процесс занимает несколько минут, что выгодно отличает их от электромобилей, для заряда батареи которых требуется несколько часов. Причем на одной заправке FCEV может проехать несколько сотен километров. Водородные технологии уже опробованы на городских автобусах и могут применяться на магистральных грузовиках и других тяжелых транспортных средствах.

Миф № 5: FCEV не имеют достаточного запаса хода

Автомобили на топливных элементах при нулевом выбросе вредных веществ сохраняют производительность и диапазон обычных автомобилей с ДВС. Способность нести больший запас энергии на борту по сравнению с электромобилями на батареях означает, что FCEV имеют большую дальность езды. В то же время производительность топливных элементов постоянно улучшается. Сейчас запаса водорода, который может храниться в баке FCEV, хватает для пробега, сопоставимого с обычными автомобилями и гибридами. В одном из реальных дорожных тестов «водородный» кроссовер Toyota Highlander проехал на одном баке свыше 650 километров, показав эквивалентный расход топлива 3,4 л/100 км. Выпускаемые в настоящее время автомобили на топливных элементах имеют в три раза больший запас хода по сравнению с электромобилями на батареях, а время их заправки составляет несколько минут (вместо нескольких часов), и это еще не предел.

Стандарты заправки водородом

Европа, Япония и США выразили твердое намерение развивать инфраструктуру для транспортных средств на топливных элементах (FCEV). Ожидается, что к 2016 году будет открыто свыше 230 водородных заправочных станций, а к 2025 году их число достигнет 1680. Семь автопроизводителей объявили о совместных планах продавать или сдавать в лизинг автомобили на топливных элементах — BMW-Toyota, Daimler-Ford-Nissan и Honda-GM.

В связи с этим возникает необходимость в разработке единых стандартов заправки водородом. Разработанные в лабораториях и проверенные на практике в течение последнего десятилетия, эти стандарты создают основу для создания первичной инфраструктуры водородных заправок по всему миру. В настоящее время существует четыре стандарта, разработанных SAE: качества водородного топлива (SAE J2719); заправки водородом (SAE J2601); коммуникации между автомобилем и водородной станцией (SAE J2799); конструкции заправочных сопла-гнезда (SAE J2600).

Стандарт SAE J2719

Стандарт SAE J2719 устанавливает минимально допустимую чистоту водорода 99,97%, а также максимальные уровни содержания различных загрязняющих веществ.

В топливных элементах используется платиновый катализатор, который наносится на поверхность пористого углеродного анода. Катализаторы чрезвычайно чувствительны к химическим загрязнениям, и даже небольшое количество примесей, содержащихся в водороде, приводит к их порче и невосстановимым потерям в производительности топливных ячеек. Это предъявляет высокие требования к чистоте водорода, используемого в качестве топлива для FCEV. Допустимые уровни некоторых видов примесей находятся в диапазоне нескольких частей на миллиард.

Требования стандарта SAE J2719 к чистоте водорода
Загрязняющие примеси Химическая формула Максимально допустимые уровни (ppmv)
Вода H2O 5
Углеводороды (C1 basis) 2
Кислород O2 5
Гелий He 300
Азот N2 100
Аргон Ar 100
Двуокись углерода CO2 2
Окись углерода CO 0.2
Соединений серы 0.004
Формальдегид HCHO 0.01
Муравьиная кислота HCOOH 0.2
Аммиак NH3 0.1
Галогенированные соединения 0.05
Твердые частицы 1 mg/kg

Стандарт SAE J2601

Назначение стандарта SAE J2601 – установить единый всемирный протокол заправки легких транспортных средств на топливных элементах (FCEV) на заправочных станциях с давлением 35 MПa и 70 MПa. Увеличение сжатия водорода до 70 MПa позволяет повысить дальность поездки FCEV на одной заправке. Стандарт SAE J2601 относится к легким FCEV с водородным баком, вмещающим от 2 до 10 кг водорода при давлении 70 MПa и от 2,4 до 6 кг при давлении 35 MПa. Отдельные документы стандарта касаются заправки тяжелых грузовиков и вилочных погрузчиков.

Стандарт SAE J2601 позволяет безопасно и быстро (в течение 3-5 минут) полностью заправить легкие транспортные средства на топливных элементах, включая модели с дальностью поездки свыше 500 км. При этом достигается высокая степень наполнения водородных баков и хранилищ водорода без превышения эксплуатационных ограничений. SAE J2601 считается ключевым стандартом, необходимым для коммерциализации автомобилей на топливных элементах и водородных заправочных станций.

SAE J2601 устанавливает ограничения по безопасности и требования к производительности раздаточного устройства газообразного водорода. Критерии включают: максимальную температуру топлива у сопла дозатора, максимальную скорость истечения топлива, максимальную скорость повышения давления и другие параметры, базирующиеся на охлаждающей способности раздаточной колонки станции.

 

Стандарт SAE J2601 для FCEV малой грузоподъемности использует справочные таблицы для заправки при давлении 35 MПa и 70 MПa. Эти таблицы могут быть запрограммированы в блок управления раздаточного устройства для контроля над процессом заправки. Стандарт J2601 определяет четыре типа раздаточных колонок в зависимости от температуры, до которой предварительно охлаждается водород. В устройствах типа «A» газ охлаждается до -40°C, типа «B» — до -30°C, типа «C» — до -20°C, устройства типа «D» не имеют функции охлаждения. Скорость заправки напрямую связана с охлаждающей способностью раздаточной колонки. Охлаждение необходимо для компенсирования тепла, выделяемого при сжатии газа. В качестве исходных данных в таблицах используются начальное давление в баке FCEV, температура окружающей среды и тип раздаточного устройства. По этим значениям вычисляется допустимая скорость заправки (средняя скорость повышения давления в рампе) и конечное давление, при котором дозатор отключается.

Если сравнивать автомобили на топливных элементах с электромобилями, то с учетом нынешнего КПД FCEV, достигающего 60%, заправка водородом (5-10 кг) эквивалентна заряду 100-200 кВтч электроэнергии за время, не превышающее 5 минут. Благодаря SAE J2601 на данный момент FCEV можно считать единственной технологией с нулевым выбросом, которая способна конкурировать по времени заправки и дальности поездки с автомобилями с бензиновыми ДВС.

Стандарт SAE J2799

 

В дополнение к стандарту SAE J2601 с целью дальнейшей оптимизации процесса заправки и обеспечения высокой степени наполения (95-100%) был разработан стандарт беспроводной связи между FCEV и водородной станцией SAE J2799. Этот опциональный протокол использует технологию инфракрасной передачи данных (Infrared Data Association technology) для обмена информацией между транспортным средством, водородным баком и дозатором. Повышение наполняемости бака позволяет достичь большей дальности поездки без дозаправки.

Стандарт SAE J2600

SAE J2600 регламентирует конструкцию и порядок испытания заправочных разъемов, сопел и емкостей, предназначенных для заправки наземных транспортных средств, в которых в качестве топлива используется сжатый водород. Разъемы, сопла и емкости в обязательном порядке должны отвечать требованиям стандарта и пройти все установленные испытания, чтобы считаться совместимыми с SAE J2600.

Стандарт применяется к устройствам, которые имеют классы давления H11, H25, H35, H50 и H70. Целями разработки SAE J2600 являются:

  • предотвращение возможности заправки автомобиля на топливных элементах (FCEV), имеющим класс давления ниже, чем класс давления дозатора;
  • допуск возможности заправки FCEV дозатором, имеющим равный или меньший класс давления;
  • предотвращение возможности заправки FCEV на заправочных станциях другого сжатого газа (не водорода);
  • предотвращение возможности заправки других транспортных средств, использующих в качестве топлива сжатый газ, на водородных заправочных станциях.

Водород как топливо для автомобилей

В настоящее время многие технические вопросы по внедрению водородной энергетики решены. Все ведущие автомобильные компании имеют концептуальные модели машин, работающих на водороде. Существуют станции заправки этих автомобилей. Однако стоимость водорода пока намного выше, чем бензина или природного газа. Чтобы новая отрасль стала коммерчески оправданной, необходимо выйти на новый уровень получения водорода и снизить цену на него.

Получение водорода

Сейчас известно около десятка методов получения водорода из разных исходных материалов. Самый известный — гидролиз воды, ее разложение при пропускании электрического тока, но он требует больших затрат энергии. Главным направлением снижения энергозатрат при электролизе воды является поиск новых материалов для электродов и электролитов.

Разрабатываются методы получения водорода из воды с использованием неорганических восстановителей — электроотрицательных металлов и их сплавов с добавкой металлов-активаторов. Такие сплавы названы энергоаккумулирующими веществами (ЭАВ). Они позволяют получать из воды любое количество водорода. Еще одним способом выделения водорода из воды может стать ее фотоэлектрохимическое разложение под действием солнечного света.

К распространенным методам относятся парофазная переработка метана (природного газа) и термический метод разложения угля и другого биоматериала. Перспективны термохимические циклы производства водорода, парофазные методы конверсии его из каменного и бурого угля и торфа, а также метод подземной газификации угля с получением водорода.

Отдельная тема — разработка катализаторов для получения водорода из органического сырья — продукта переработки биомассы. Но при этом наряду с водородом образуются значительные количества окиси углерода (СО), который необходимо утилизировать.

Еще один перспективный метод — процесс каталитической паровой переработки этанола. Можно также получить водород из угля (как каменного, так и бурого) и даже из торфа. Также все большее внимание привлекает сероводород. Это обусловлено низкими затратами энергии на электролитическое выделение водорода из сероводорода и большими запасами этого соединения в природе — в воде морей и океанов, в природном газе. Сероводород также получается в качестве побочного продукта нефтеперерабатывающей, химической, металлургической промышленности.

Водород можно получать с использованием плазменных технологий. С их помощью можно газифицировать даже самое низкокачественное углеродное сырье, например твердые бытовые отходы. В качестве источника термической плазмы используются плазмотроны — устройства, генерирующие плазменную струю.

Хранение водорода

Для хранения водорода непосредственно в автомобиле существуют следующие способы: газобаллонный, криогенный, металлогидридный.

В первом случае водород хранится в сжатом виде при давлении около 700 атм. При этом масса водорода составляет всего около 3% от массы баллона и для хранения сколько-нибудь заметного количества газа нужны весьма тяжёлые и объёмные баллоны. Это не говоря уже о том, что изготовление, зарядка и эксплуатация таких баллонов требуют особых мер предосторожности из-за опасности взрыва.

Криогенный способ подразумевает сжижение водорода и хранение его в теплоизолированных сосудах при температуре -235 градусов. Это достаточно энергозатратный процесс – сжижение обходится в 30-40% той энергии, которая получится при использовании полученного водорода. Но, как-бы ни была совершенна теплоизоляция, водород в баке нагревается, давление увеличивается и газ стравливается в атмосферу через предохранительный клапан. Всего несколько дней – и баки пусты!

Самыми перспективными являются твердые накопители, так называемые металлогидриды. Эти соединения умеют вбирать в себя, как губка, водород при одних условиях и отдавать при других, например при нагревании. Чтобы это было экономически выгодно, такой металлогидрид должен «впитывать» не менее 6% водорода. Весь мир сейчас ищет подобные материалы. Как только материал будет найден — его подхватят технологи, и процесс «водородизации» пойдет.

Топливные элементы

Топливная ячейка (Fuel Cell) — это устройство, превращающее химическую энергию в электрическую. Она похожа по принципу действия на обычную батарейку, но отличается тем, что для ее работы необходима постоянная подача извне веществ для протекания электрохимической реакции. В топливные элементы подаются водород и кислород, а на выходе получают электричество, воду и тепло. К их достоинствам относится экологическая чистота, надёжность, долговечность и простота эксплуатации. В отличие от обычных аккумуляторов электрохимические преобразователи могут работать практически неограниченное время, пока поступает топливо. Их не надо часами заряжать до полной зарядки. Более того, сами ячейки могут заряжать АКБ во время стоянки автомобиля с выключенным мотором.

Наибольшее распространение в водородомобилях получили топливные ячейки с протонной мембраной (PEMFC) и твердооксидные топливные ячейки (SOFC).

Ячейки с протонной мембраной

Топливная ячейка с протонной обменной мембраной работает следующим образом. Между анодом и катодом находятся специальная мембрана и катализатор с платиновым покрытием. На анод поступает водород, а на катод — кислород (например, из воздуха). На аноде водород при помощи катализатора разлагается на протоны и электроны. Протоны водорода проходят через мембрану и попадают на катод, а электроны отдаются во внешнюю цепь (мембрана их не пропускает). Полученная таким образом разность потенциалов приводит к возникновению электрического тока. На стороне катода протоны водорода окисляются кислородом. В результате возникает водяной пар, который и является основным элементом выхлопных газов автомобиля. Обладая высоким КПД, РЕМ-элементы имеют один существенный недостаток — для их работы требуется чистый водород, хранение которого является достаточно серьезной проблемой.

Если будет найден такой катализатор, который заменит в этих ячейках дорогую платину, тогда сразу же будет создан дешевый топливный элемент для получения электроэнергии, а значит, мир избавится от нефтяной зависимости.

Твердооксидные ячейки

Твердооксидные ячейки SOFC значительно менее требовательны к чистоте топлива. Кроме того, благодаря использованию РОХ-реформера (Partial Oxidation — частичное окисление) такие ячейки в качестве топлива могут потреблять обычный бензин. Процесс превращения бензина непосредственно в электричество выглядит следующим образом. В особом устройстве — реформере при температуре около 800 °С бензин испаряется и разлагается на составные элементы. При этом выделяется водород и углекислый газ. Далее, также под воздействием температуры и при помощи непосредственно SOFС (состоящих из пористого керамического материала на основе окиси циркония), водород окисляется кислородом, находящимся в воздухе. После получения из бензина водорода процесс протекает далее по описанному выше сценарию, с одной лишь разницей: топливная ячейка SOFC, в отличие от устройств, работающих на водороде, менее чувствительна к посторонним примесям в исходном топливе. Так что качество бензина не должно повлиять на работоспособность топливного элемента. Высокая рабочая температура SOFC (650–800 градусов) является существенным недостатком, процесс прогрева занимает около 20 минут. Зато избыточное тепло проблемы не представляет, поскольку оно полностью выводится оставшимся воздухом и выхлопными газами, производимыми реформером и самой топливной ячейкой. Это позволяет интегрировать SOFC-систему в автомобиль в виде самостоятельного устройства в термически изолированном корпусе. Модульная структура позволяет добиваться необходимого напряжения путем последовательного соединения набора стандартных ячеек. И, возможно, самое главное с точки зрения внедрения подобных устройств — в SOFC нет весьма дорогостоящих электродов на основе платины. Именно дороговизна этих элементов является одним из препятствий в развитии и распространении технологии PEMFC.