Tag Archives: топливных элементов

Toyota FCV Mirai

 

Toyota взяла твердый курс на водородные технологии. Глава корпорации Такеши Учиямада (Takeshi Uchiyamada) заявил, что водород и водородные топливные ячейки изменят правила игры в социальном и экономическом плане, а водород станет топливом будущего. Именно поэтому тойотовцы назвали свое творение Mirai, что означает «будущее». В Toyota уверены, что Mirai – это автомобиль, который откроет дверь в будущее для их компании.

Toyota Mirai – четырехдверный среднеразмерный переднеприводной седан на топливных элементах, который может составить полноценную конкуренцию автомобилям с ДВС. На его заправку уходит всего лишь 3-5 минут, а дальность поездки достигает 482 км. Топливные ячейки Mirai могут работать при температуре до 30 градусов мороза. Силовая установка ускоряет Mirai до 100 км/ч за 9 секунд, разгон с 40 до 65 км/ч занимает 3 секунды, а максимальная скорость составляет 178 км/ч.

Основные элементы TFCS

 

В Mirai используется фирменная система Toyota Fuel Cell System (TFCS), использующая технологии топливных ячеек и гибридные технологии. Она включает в себя также собственные разработки Toyota: блок топливных ячеек (FC Stack), повышающий преобразователь (FC boost converter) и водородные баллоны высокого давления. TFCS намного энергоэффективнее ДВС и не выделяет при работе CO2 и канцерогенных веществ.

Toyota FC Stack

 

Максимальная мощность нового блока топливных элементов достигает 114 кВт (153 л.с.). Эффективность генерации электричества повышена за счет использования тончайших 3D каналов. Каналы расположены в тонкой трехмерной решетчатой структуре и повышают дисперсию воздуха (кислорода), что позволяет достичь равномерной выработки электроэнергии на поверхности ячеек. Это, в свою очередь, обеспечивает компактные размеры и высокий уровень производительности – плотность выходной мощности достигает 3,1 кВт/л или 2 кВт/кг. Это один из самых высоких показателей в мире. Каждый блок состоит из 370 ячеек толщиной 1,34 мм и весит 102 грамма. В отличие от предыдущих устройств, разработанных Toyota, новый FC Stack не требует применения увлажнителя. Значительного сокращения стоимости топливных элементов удалось добиться также за счет уменьшения использования драгоценных металлов (количество платины в катализаторе снизилось на две трети, а обработка поверхности золотом была исключена). Батарея топливных элементов располагается под передними сиденьями.

FC Boost Converter

Новый компактный (13-литровый), высокоэффективный преобразователь большой емкости был разработан для повышения энергии, генерируемой батареей топливных ячеек, до 650 В. Увеличение напряжения позволило уменьшить размер электродвигателя и количество блоков топливных элементов, что привело к снижению общей стоимости системы. Преобразователь расположен непосредственно перед батареей топливных элементов.

Водородные баллоны высокого давления

Два баллона, имеющие трехслойную структуру, изготовлены из пластика, армированного углеродным волокном и других материалов. Водород хранится в них под давлением 70 МПа (около 700 бар). Трехслойная структура включает в себя:

  • Внутренний слой: пластиковый вкладыш (предотвращает утечку водорода).
  • Средний слой: пластик, армированный углеродным волокном (структурная основа).
  • Внешний слой: пластик, армированный стекловолокном (защищает внешнюю поверхность от истирания).

 

Передний баллон вмещает 60 литров, задний – 62,4 литра. Общая масса хранимого водорода – около 5 кг. По сравнению с баллонами, которые использовались в Toyota FCHV-adv, объем увеличился почти на 20% при уменьшении веса и размеров. Плотность хранения водорода достигает 5,7% (самый высокий показатель в мире).

Электродвигатель и батарея

Силовая установка включает в себя также электродвигатель, блок управления мощностью и никель-металлгидридную (NiMH) батарею. Электромотор развивает мощность 113 кВт (152 л.с.) и 335 Нм крутящего момента.

Безопасность

Toyota начала разработку топливных ячеек в начале 1990-х и создала ряд «водородных» автомобилей, общий пробег которых составил свыше 1,6 млн. км. Водородные баллоны из углеволокна не раз подвергались испытаниям в краш-тестах. Весь накопленный опыт отражен в безопасности и надежности Mirai. В центре безопасности Toyota автомобиль был подвергнут обширным краш-тестам, включающим фронтальные, боковые и задние удары. Структура кузова спроектирована таким образом, чтобы энергия удара распределялась и поглощалась несколькими его элементами.

Особое внимание было уделено защите водородных баллонов и батареи топливных элементов при деформациях кузова. Баллоны оснащены датчиками водорода, которые подают сигнал тревоги и перекрывают запорные клапаны в случае утечки. Все элементы, содержащие и подающие водород, размещены вне пассажирского салона, что обеспечивает, в случае утечки, его быстрое рассеивание в окружающей среде.

Каркас блока топливных элементов изготовлен из недавно разработанного термопластичного армированного углеродным волокном пластика. Это легкий, прочный и легко внедряемый в массовое производство материал. Он защищает FC Stack, поглощая удары от неровностей дорожного покрытия.

Водородные технологии Toyota

В конце ХХ века многие поверили в то, что в скором времени на смену нефти придут топливные элементы. Не осталась в стороне от всеобщего увлечения водородными технологиями и Toyota. Наряду с гибридом Prius, японцы в том же 1997 году создали и первый прототип своего «водородомобиля» Toyota FCHV-1. Основой для его создания послужила модель Highlander. В течение последующих пяти лет (в 1999 и в 2001 годах) были созданы усовершенствованные варианты FCHV-2 и FCHV-3, пока в 2002 году не появился первый серийный вариант FCHV-4. Однако полномасштабного коммерческого выпуска японцы не планировали. Ограниченная серия из 20 автомобилей была отдана для тестирования в различные университеты, корпорации и правительственные учреждения в США и Японии.Силовая установка Toyota FCHV состояла из блока топливных элементов мощностью 90 кВт, которая питала 90-киловаттный электродвигатель, развивавший 260 Нм крутящего момента. Никель-металлгидридная батарея служила дополнительным источником энергии для подпитки электромотора во время ускорений и для движения на малых скоростях. Ее емкости хватало на 50 километров пробега. Принцип работы силовой установки очень похож на работу гибридной установки Hybrid Synergy Drive (HSD), применяемой на Toyota Prius. Главное отличие состояло в том, что вместо ДВС использовался блок топливных элементов. А вот механизм совместной или раздельной работы батареи и топливных элементов, система рекуперативного торможения остались прежними. Toyota FCHV, имея снаряженную массу почти 1900 кг, разгонялась до 155 км/ч, а запаса водорода хватало на 330 км пробега.В 2008 году появилась новая версия «водородомобиля» под названием Toyota FCHV ADV. Окончание ADV означало «Advanced» — «Улучшенный». В чем же заключались улучшения? Прежде всего, в существенной доработке блока топливных элементов. Изменения, внесенные в его конструкцию, увеличили энергоотдачу на 25% и, что самое главное, позволили FCHV ADV надежно работать при температурах до -30°С. Новые баки позволили хранить водород при давлении, вдвое превышающем прежнее, а, значит, вмещать большее его количество. Кроме того, заметно снижено энергопотребление вспомогательных систем и увеличена эффективность системы рекуперации энергии торможения. В результате всех этих улучшений Toyota FCHV ADV способен преодолеть без дозаправки 800 км! Остальные же «автомобильные» характеристики остались прежними.

В июне 2008 года водородомобиль получил сертификат серийного автомобиля. В январе 2010 года Toyota объявила о начале трехлетних демонстрационных испытаний 100 экземпляров FCHV-ADV на дорогах США. Как и прежде, автомобили будут работать в университетах и госучреждениях, доказывая преимущества этого вида «зеленого» транспорта и стимулируя развитие инфраструктуры для «водородомобилей». А полномасштабное серийное производство японцы обещают начать не ранее 2015 года. А к этому времени, как считают специалисты Toyota, и более точно определится вектор развития «зеленого» транспорта — то ли это будут автомобили на топливных элементах, то ли «чистые» электромобили.

Компания «Авто-Семья» оформляет срочный выкуп автомобиля с выездом. Если вы хотите быстро продать свой автомобиль по справедливой цене, обращайтесь к специалистам компании, воспользуйтесь калькулятором онлайн на сайте компании и узнайте рыночную стоимость своего автомобиля. Услуга доступна круглосуточно.

Honda FCX Clarity: добраться до серии

Эта модель была удостоена престижного титула World Green Car of the year 2009. Тогда еще перспективы водородной энергетики казались радужными. Но за прошедшее время FCX так и не пошла в серию, хотя производственная линия была построена. Всего изготовлено 220 машин, из которых на 20 провели краш-тесты, чтобы доказать безопасность хранения водорода, а оставшиеся были сданы в аренду на три года в США и Японии. Но с момента создания машины прорыва в получении водорода не произошло, поэтому FCX остается ждать лучших времен. Хотя с технической точки зрения машина совсем не плоха.

Водород, поступающий из бака в батарею топливных элементов, соединяется там с кислородом, получаемым из внешней среды. Энергия реакции преобразуется в электричество, которое питает электромотор. Дополнительная энергия, получаемая при торможении, остается в литиево-ионном аккумулятореРекуперативная тормозная система здесь — почти такая же, как и у обычного гибрида. При этом КПД водородной установки в 3 раза превышает показатель традиционного бензинового двигателя и в 2 раза — гибридной силовой установки.

Основной элемент автомобиля FCX Clarity — водородный электрогенератор V Flow FC мощностью 100 кВт. Он достаточно компактен и весит всего лишь 67 кг. Вырабатываемая им электроэнергия используется для питания ходового электромотора мощностью 136 л.с. и крутящим моментом 256 Нм. Дополнительную энергию электродвигателю при старте и разгоне обеспечивает литий-ионная батарея напряжением 288 В. Поэтому, несмотря на немаленькие габариты (длина 4835 мм, ширина 1845 мм, высота 1470 мм) и снаряженную массу в 1600 кг FCX Clarity ускоряется до 100 км/ч за 10 с. Максимальная скорость 160 км/ч. Привод от электромотора через редуктор осуществляется на передние колеса. 170 литровый бак вмещает в себя 4 килограмма водорода, которого хватает на 470 километров, то есть расход составляет 1кг примерно на 117 км. На заправку уходит 3-4 минуты.

Из электронных систем FCX Clarity оборудована системой ABS с электронным распределением тормозного усилия, системой экстренного торможения, системой стабилизации ESP. Отсутствие выхлопной системы позволило сделать днище кузова абсолютно плоским, что положительно сказывается на аэродинамике автомобиля: воздух плавно обтекает машину. Расположение бака с водородом, литий-ионной батареи и непосредственно самого электрохимического генератора обеспечивает низкий центр тяжести, улучшая управление и устойчивость.

При нынешней удельной емкости литий-ионных батарей чисто электрическая платформа годится для машин классов А+ и В+. Для более крупных машин, каковой и является FCX Clarity, более перспективной представляется технология топливных элементов.